{"title":"基于PCA滤波的2.5D人脸识别协方差描述符","authors":"L. Chong, A. Teoh, T. Ong","doi":"10.1145/3077829.3077832","DOIUrl":null,"url":null,"abstract":"Region covariance matrix (RCM) as a feature descriptor is shown promising in various object detection and recognition tasks. However, vanilla RCM breaks down in face recognition due to its inadequacy in extracting discriminative features from facial image. In this paper, cascaded Principle Component Analysis (PCA) filter responses that derived from the multi-layer PCA network are leveraged to extract the sufficient discriminative facial feature for RCM construction. The factors that affect the performance of cascaded PCA filter responses in forming RCM for 2.5D face recognition is investigated. To be specific, the influence of patch size and filter numbers of cascaded PCA filter responses to RCM is probed. Besides that, block division is proposed for RCM to further enhance the accuracy performance. Experimental results have demonstrated the efficacy of the proposed approach.","PeriodicalId":262849,"journal":{"name":"International Conference on Biometrics Engineering and Application","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PCA filter based covariance descriptor for 2.5D face recognition\",\"authors\":\"L. Chong, A. Teoh, T. Ong\",\"doi\":\"10.1145/3077829.3077832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Region covariance matrix (RCM) as a feature descriptor is shown promising in various object detection and recognition tasks. However, vanilla RCM breaks down in face recognition due to its inadequacy in extracting discriminative features from facial image. In this paper, cascaded Principle Component Analysis (PCA) filter responses that derived from the multi-layer PCA network are leveraged to extract the sufficient discriminative facial feature for RCM construction. The factors that affect the performance of cascaded PCA filter responses in forming RCM for 2.5D face recognition is investigated. To be specific, the influence of patch size and filter numbers of cascaded PCA filter responses to RCM is probed. Besides that, block division is proposed for RCM to further enhance the accuracy performance. Experimental results have demonstrated the efficacy of the proposed approach.\",\"PeriodicalId\":262849,\"journal\":{\"name\":\"International Conference on Biometrics Engineering and Application\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Biometrics Engineering and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077829.3077832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Biometrics Engineering and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077829.3077832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PCA filter based covariance descriptor for 2.5D face recognition
Region covariance matrix (RCM) as a feature descriptor is shown promising in various object detection and recognition tasks. However, vanilla RCM breaks down in face recognition due to its inadequacy in extracting discriminative features from facial image. In this paper, cascaded Principle Component Analysis (PCA) filter responses that derived from the multi-layer PCA network are leveraged to extract the sufficient discriminative facial feature for RCM construction. The factors that affect the performance of cascaded PCA filter responses in forming RCM for 2.5D face recognition is investigated. To be specific, the influence of patch size and filter numbers of cascaded PCA filter responses to RCM is probed. Besides that, block division is proposed for RCM to further enhance the accuracy performance. Experimental results have demonstrated the efficacy of the proposed approach.