神经结构搜索网络的分层内存约束算子调度

Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, Lei Qiao
{"title":"神经结构搜索网络的分层内存约束算子调度","authors":"Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, Lei Qiao","doi":"10.1145/3489517.3530472","DOIUrl":null,"url":null,"abstract":"Neural Architecture Search (NAS) is widely used in industry, searching for neural networks meeting task requirements. Meanwhile, it faces a challenge in scheduling networks satisfying memory constraints. This paper proposes HMCOS that performs hierarchical memory-constrained operator scheduling of NAS networks: given a network, HMCOS constructs a hierarchical computation graph and employs an iterative scheduling algorithm to progressively reduce peak memory footprints. We evaluate HMCOS against RPO and Serenity (two popular scheduling techniques). The results show that HMCOS outperforms existing techniques in supporting more NAS networks, reducing 8.7~42.4% of peak memory footprints, and achieving 137--283x of speedups in scheduling.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical memory-constrained operator scheduling of neural architecture search networks\",\"authors\":\"Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, Lei Qiao\",\"doi\":\"10.1145/3489517.3530472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural Architecture Search (NAS) is widely used in industry, searching for neural networks meeting task requirements. Meanwhile, it faces a challenge in scheduling networks satisfying memory constraints. This paper proposes HMCOS that performs hierarchical memory-constrained operator scheduling of NAS networks: given a network, HMCOS constructs a hierarchical computation graph and employs an iterative scheduling algorithm to progressively reduce peak memory footprints. We evaluate HMCOS against RPO and Serenity (two popular scheduling techniques). The results show that HMCOS outperforms existing techniques in supporting more NAS networks, reducing 8.7~42.4% of peak memory footprints, and achieving 137--283x of speedups in scheduling.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经结构搜索(Neural Architecture Search, NAS)广泛应用于工业中,用于搜索满足任务要求的神经网络。同时,在满足内存约束的网络调度问题上也面临着挑战。本文提出了一种对NAS网络进行分层内存约束算子调度的HMCOS算法:给定一个网络,HMCOS构建一个分层计算图,并采用迭代调度算法逐步降低峰值内存占用。我们将HMCOS与RPO和Serenity(两种流行的调度技术)进行了比较。结果表明,HMCOS在支持更多NAS网络方面优于现有技术,减少了8.7~42.4%的峰值内存占用,并实现了137 ~ 283x的调度速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical memory-constrained operator scheduling of neural architecture search networks
Neural Architecture Search (NAS) is widely used in industry, searching for neural networks meeting task requirements. Meanwhile, it faces a challenge in scheduling networks satisfying memory constraints. This paper proposes HMCOS that performs hierarchical memory-constrained operator scheduling of NAS networks: given a network, HMCOS constructs a hierarchical computation graph and employs an iterative scheduling algorithm to progressively reduce peak memory footprints. We evaluate HMCOS against RPO and Serenity (two popular scheduling techniques). The results show that HMCOS outperforms existing techniques in supporting more NAS networks, reducing 8.7~42.4% of peak memory footprints, and achieving 137--283x of speedups in scheduling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信