手势识别使用EMD和VMD技术

Bhavana Sharma, J. Panda
{"title":"手势识别使用EMD和VMD技术","authors":"Bhavana Sharma, J. Panda","doi":"10.1109/IATMSI56455.2022.10119304","DOIUrl":null,"url":null,"abstract":"A new approach based on decomposition techniques for better feature extraction of recognition of dynamic hand gesture recognition system. In this paper we are analyzing a comparison of two useful noise removal techniques, empirical mode decomposition (EMD) and variation mode decomposition (VMD) for strong occlusions, nonstationary and weak robustness complex backgrounds. So implemented results show the feature extraction by using EMD with different values of intrinsic mode function (IMFs) and VMD with different values of modes and obtain a noise free signal. A non-stationary electromyography (EMG) signal of hand movement is measured of VIVA (Vision for Intelligent Vehicles and Applications) dataset, where eight subjects are performing 19 types of dynamic hand gestures in a vehicle and this is captured by Microsoft kinetic.","PeriodicalId":221211,"journal":{"name":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hand gesture recognition using EMD and VMD techniques\",\"authors\":\"Bhavana Sharma, J. Panda\",\"doi\":\"10.1109/IATMSI56455.2022.10119304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach based on decomposition techniques for better feature extraction of recognition of dynamic hand gesture recognition system. In this paper we are analyzing a comparison of two useful noise removal techniques, empirical mode decomposition (EMD) and variation mode decomposition (VMD) for strong occlusions, nonstationary and weak robustness complex backgrounds. So implemented results show the feature extraction by using EMD with different values of intrinsic mode function (IMFs) and VMD with different values of modes and obtain a noise free signal. A non-stationary electromyography (EMG) signal of hand movement is measured of VIVA (Vision for Intelligent Vehicles and Applications) dataset, where eight subjects are performing 19 types of dynamic hand gestures in a vehicle and this is captured by Microsoft kinetic.\",\"PeriodicalId\":221211,\"journal\":{\"name\":\"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IATMSI56455.2022.10119304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IATMSI56455.2022.10119304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于分解技术的动态手势识别系统特征提取新方法。在本文中,我们分析了两种有用的去噪技术,经验模式分解(EMD)和变模分解(VMD)在强遮挡、非平稳和弱鲁棒性复杂背景下的比较。因此,实现结果表明,采用不同内禀模态函数(IMFs)值的EMD和不同模态值的VMD进行特征提取,得到无噪声信号。使用VIVA (Vision for Intelligent Vehicles and Applications)数据集测量手部运动的非静止肌电图(EMG)信号,其中8名受试者在车辆中执行19种动态手势,这是由Microsoft kinetic捕获的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand gesture recognition using EMD and VMD techniques
A new approach based on decomposition techniques for better feature extraction of recognition of dynamic hand gesture recognition system. In this paper we are analyzing a comparison of two useful noise removal techniques, empirical mode decomposition (EMD) and variation mode decomposition (VMD) for strong occlusions, nonstationary and weak robustness complex backgrounds. So implemented results show the feature extraction by using EMD with different values of intrinsic mode function (IMFs) and VMD with different values of modes and obtain a noise free signal. A non-stationary electromyography (EMG) signal of hand movement is measured of VIVA (Vision for Intelligent Vehicles and Applications) dataset, where eight subjects are performing 19 types of dynamic hand gestures in a vehicle and this is captured by Microsoft kinetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信