基于GA-ARMA*的数控机床主轴轴向热误差建模方法研究

Weicheng Lin, Ling Yin, Fei Zhang, Zewei He, Yu Chen, Wenhao Li, Yeming Song
{"title":"基于GA-ARMA*的数控机床主轴轴向热误差建模方法研究","authors":"Weicheng Lin, Ling Yin, Fei Zhang, Zewei He, Yu Chen, Wenhao Li, Yeming Song","doi":"10.1109/RCAR54675.2022.9872211","DOIUrl":null,"url":null,"abstract":"In order to improve the prediction accuracy of the thermal error model of CNC machine tools based on time series and reduce the time of model parameter identification, a time series thermal error modeling method based on intelligent optimization (GA-ARMA) was proposed. Using the reciprocal of the residual between the actual value and the predicted value as the genetic algorithm (GA) individual fitness value function, select the best individual obtained by evolution for several generations as the parameter of the ARMA model, quickly identify the parameters of the ARMA model, and establish the GA-ARMA spindle axial thermal error model. Through experiments to compare the prediction effects of the time series thermal error model based on intelligent optimization and the time series thermal error model, taking a certain type of three-axis CNC machine tool as the object, the prediction and comparison are carried out under different working conditions. The experimental results show that the model prediction average residual error reaches 1.28 $\\mu$m, and the modeling efficiency is improved by 544%.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Axial Thermal Error Modeling Method of CNC Machine Tool Spindle Based on GA-ARMA*\",\"authors\":\"Weicheng Lin, Ling Yin, Fei Zhang, Zewei He, Yu Chen, Wenhao Li, Yeming Song\",\"doi\":\"10.1109/RCAR54675.2022.9872211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the prediction accuracy of the thermal error model of CNC machine tools based on time series and reduce the time of model parameter identification, a time series thermal error modeling method based on intelligent optimization (GA-ARMA) was proposed. Using the reciprocal of the residual between the actual value and the predicted value as the genetic algorithm (GA) individual fitness value function, select the best individual obtained by evolution for several generations as the parameter of the ARMA model, quickly identify the parameters of the ARMA model, and establish the GA-ARMA spindle axial thermal error model. Through experiments to compare the prediction effects of the time series thermal error model based on intelligent optimization and the time series thermal error model, taking a certain type of three-axis CNC machine tool as the object, the prediction and comparison are carried out under different working conditions. The experimental results show that the model prediction average residual error reaches 1.28 $\\\\mu$m, and the modeling efficiency is improved by 544%.\",\"PeriodicalId\":304963,\"journal\":{\"name\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR54675.2022.9872211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高基于时间序列的数控机床热误差模型预测精度,减少模型参数辨识时间,提出了一种基于智能优化的时间序列热误差建模方法(GA-ARMA)。采用实际值与预测值之间残差的倒数作为遗传算法(GA)个体适应度值函数,选择经过几代进化得到的最优个体作为ARMA模型的参数,快速辨识出ARMA模型的参数,建立GA-ARMA主轴轴向热误差模型。通过实验比较基于智能优化的时间序列热误差模型和时间序列热误差模型的预测效果,以某型三轴数控机床为对象,在不同工况下进行预测和比较。实验结果表明,模型预测平均残差达到1.28 $\mu$m,建模效率提高544%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Axial Thermal Error Modeling Method of CNC Machine Tool Spindle Based on GA-ARMA*
In order to improve the prediction accuracy of the thermal error model of CNC machine tools based on time series and reduce the time of model parameter identification, a time series thermal error modeling method based on intelligent optimization (GA-ARMA) was proposed. Using the reciprocal of the residual between the actual value and the predicted value as the genetic algorithm (GA) individual fitness value function, select the best individual obtained by evolution for several generations as the parameter of the ARMA model, quickly identify the parameters of the ARMA model, and establish the GA-ARMA spindle axial thermal error model. Through experiments to compare the prediction effects of the time series thermal error model based on intelligent optimization and the time series thermal error model, taking a certain type of three-axis CNC machine tool as the object, the prediction and comparison are carried out under different working conditions. The experimental results show that the model prediction average residual error reaches 1.28 $\mu$m, and the modeling efficiency is improved by 544%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信