{"title":"FIR高阶数字微分器的神经加权最小二乘设计","authors":"Yue-Dar Jou, Fu-Kun Chen, Chao-Ming Sun","doi":"10.1109/ICDSP.2009.5201078","DOIUrl":null,"url":null,"abstract":"This paper extends the neural network based algorithm for equiripple design of higher-order digital differentiators in the weighted least-squares sense. The proposed approach formulates an error representation reflecting the difference between the desired amplitude response and the designed response in a Lyapunov error function. The optimal filter coefficients are obtained when neural network achieves convergence. Furthermore, by using a weighted updating function, the proposed method can find a very good approximation of the minimax solution. Simulation results indicate that the proposed technique is able to achieve good performance in a parallelism manner.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural weighted least-squares design of FIR higher-order digital differentiators\",\"authors\":\"Yue-Dar Jou, Fu-Kun Chen, Chao-Ming Sun\",\"doi\":\"10.1109/ICDSP.2009.5201078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the neural network based algorithm for equiripple design of higher-order digital differentiators in the weighted least-squares sense. The proposed approach formulates an error representation reflecting the difference between the desired amplitude response and the designed response in a Lyapunov error function. The optimal filter coefficients are obtained when neural network achieves convergence. Furthermore, by using a weighted updating function, the proposed method can find a very good approximation of the minimax solution. Simulation results indicate that the proposed technique is able to achieve good performance in a parallelism manner.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural weighted least-squares design of FIR higher-order digital differentiators
This paper extends the neural network based algorithm for equiripple design of higher-order digital differentiators in the weighted least-squares sense. The proposed approach formulates an error representation reflecting the difference between the desired amplitude response and the designed response in a Lyapunov error function. The optimal filter coefficients are obtained when neural network achieves convergence. Furthermore, by using a weighted updating function, the proposed method can find a very good approximation of the minimax solution. Simulation results indicate that the proposed technique is able to achieve good performance in a parallelism manner.