多维二元向量分配问题:标准、结构及以上保证参数化

Marin Bougeret, Guillerme Duvillié, R. Giroudeau, Rémi Watrigant
{"title":"多维二元向量分配问题:标准、结构及以上保证参数化","authors":"Marin Bougeret, Guillerme Duvillié, R. Giroudeau, Rémi Watrigant","doi":"10.23638/DMTCS-19-4-3","DOIUrl":null,"url":null,"abstract":"In this article we focus on the parameterized complexity of the Multidimensional Binary Vector Assignment problem (called bMVA). An input of this problem is defined by m disjoint sets \\(V^1, V^2, \\dots , V^m\\), each composed of n binary vectors of size p. An output is a set of n disjoint m-tuples of vectors, where each m-tuple is obtained by picking one vector from each set \\(V^i\\). To each m-tuple we associate a p dimensional vector by applying the bit-wise AND operation on the m vectors of the tuple. The objective is to minimize the total number of zeros in these n vectors. bMVA can be seen as a variant of multidimensional matching where hyperedges are implicitly locally encoded via labels attached to vertices, but was originally introduced in the context of integrated circuit manufacturing.","PeriodicalId":335412,"journal":{"name":"International Symposium on Fundamentals of Computation Theory","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional Binary Vector Assignment Problem: Standard, Structural and Above Guarantee Parameterizations\",\"authors\":\"Marin Bougeret, Guillerme Duvillié, R. Giroudeau, Rémi Watrigant\",\"doi\":\"10.23638/DMTCS-19-4-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we focus on the parameterized complexity of the Multidimensional Binary Vector Assignment problem (called bMVA). An input of this problem is defined by m disjoint sets \\\\(V^1, V^2, \\\\dots , V^m\\\\), each composed of n binary vectors of size p. An output is a set of n disjoint m-tuples of vectors, where each m-tuple is obtained by picking one vector from each set \\\\(V^i\\\\). To each m-tuple we associate a p dimensional vector by applying the bit-wise AND operation on the m vectors of the tuple. The objective is to minimize the total number of zeros in these n vectors. bMVA can be seen as a variant of multidimensional matching where hyperedges are implicitly locally encoded via labels attached to vertices, but was originally introduced in the context of integrated circuit manufacturing.\",\"PeriodicalId\":335412,\"journal\":{\"name\":\"International Symposium on Fundamentals of Computation Theory\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Fundamentals of Computation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23638/DMTCS-19-4-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Fundamentals of Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/DMTCS-19-4-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们主要讨论多维二进制向量分配问题(bMVA)的参数化复杂性。这个问题的输入定义为m个不相交的集合\(V^1, V^2, \dots , V^m\),每个集合由n个大小为p的二进制向量组成。输出是n个不相交的向量m元组的集合,其中每个m元组通过从每个集合中选择一个向量获得\(V^i\)。对于每个m元组,我们通过对元组的m个向量应用逐位与运算来关联一个p维向量。目标是最小化这n个向量中0的总数。bMVA可以看作是多维匹配的一种变体,其中超边缘通过附加到顶点的标签隐式地进行局部编码,但最初是在集成电路制造的背景下引入的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional Binary Vector Assignment Problem: Standard, Structural and Above Guarantee Parameterizations
In this article we focus on the parameterized complexity of the Multidimensional Binary Vector Assignment problem (called bMVA). An input of this problem is defined by m disjoint sets \(V^1, V^2, \dots , V^m\), each composed of n binary vectors of size p. An output is a set of n disjoint m-tuples of vectors, where each m-tuple is obtained by picking one vector from each set \(V^i\). To each m-tuple we associate a p dimensional vector by applying the bit-wise AND operation on the m vectors of the tuple. The objective is to minimize the total number of zeros in these n vectors. bMVA can be seen as a variant of multidimensional matching where hyperedges are implicitly locally encoded via labels attached to vertices, but was originally introduced in the context of integrated circuit manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信