中位数图移位:一种新的图域聚类算法

Salim Jouili, S. Tabbone, V. Lacroix
{"title":"中位数图移位:一种新的图域聚类算法","authors":"Salim Jouili, S. Tabbone, V. Lacroix","doi":"10.1109/ICPR.2010.238","DOIUrl":null,"url":null,"abstract":"In the context of unsupervised clustering, a new algorithm for the domain of graphs is introduced. In this paper, the key idea is to adapt the mean-shift clustering and its variants proposed for the domain of feature vectors to graph clustering. These algorithms have been applied successfully in image analysis and computer vision domains. The proposed algorithm works in an iterative manner by shifting each graph towards the median graph in a neighborhood. Both the set median graph and the generalized median graph are tested for the shifting procedure. In the experiment part, a set of cluster validation indices are used to evaluate our clustering algorithm and a comparison with the well-known Kmeans algorithm is provided.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Median Graph Shift: A New Clustering Algorithm for Graph Domain\",\"authors\":\"Salim Jouili, S. Tabbone, V. Lacroix\",\"doi\":\"10.1109/ICPR.2010.238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of unsupervised clustering, a new algorithm for the domain of graphs is introduced. In this paper, the key idea is to adapt the mean-shift clustering and its variants proposed for the domain of feature vectors to graph clustering. These algorithms have been applied successfully in image analysis and computer vision domains. The proposed algorithm works in an iterative manner by shifting each graph towards the median graph in a neighborhood. Both the set median graph and the generalized median graph are tested for the shifting procedure. In the experiment part, a set of cluster validation indices are used to evaluate our clustering algorithm and a comparison with the well-known Kmeans algorithm is provided.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在无监督聚类的背景下,提出了一种新的图域聚类算法。本文的核心思想是将特征向量域的均值移聚类及其变体应用于图聚类。这些算法已成功应用于图像分析和计算机视觉领域。提出的算法以迭代的方式工作,通过将每个图移向邻域的中位数图。对集合中值图和广义中值图的移位过程进行了检验。在实验部分,使用一组聚类验证指标来评估我们的聚类算法,并与知名的Kmeans算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Median Graph Shift: A New Clustering Algorithm for Graph Domain
In the context of unsupervised clustering, a new algorithm for the domain of graphs is introduced. In this paper, the key idea is to adapt the mean-shift clustering and its variants proposed for the domain of feature vectors to graph clustering. These algorithms have been applied successfully in image analysis and computer vision domains. The proposed algorithm works in an iterative manner by shifting each graph towards the median graph in a neighborhood. Both the set median graph and the generalized median graph are tested for the shifting procedure. In the experiment part, a set of cluster validation indices are used to evaluate our clustering algorithm and a comparison with the well-known Kmeans algorithm is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信