Prakalp Srivastava, Maria Kotsifakou, Matthew D. Sinclair, Rakesh Komuravelli, Vikram S. Adve, S. Adve
{"title":"hVISC:异构并行系统的可移植抽象","authors":"Prakalp Srivastava, Maria Kotsifakou, Matthew D. Sinclair, Rakesh Komuravelli, Vikram S. Adve, S. Adve","doi":"10.1145/2967938.2976039","DOIUrl":null,"url":null,"abstract":"Programming heterogeneous parallel systems can be extremely complex because a single system may include multiple different parallelism models, instruction sets, and memory hierarchies, and different systems use different combinations of these features. We propose a carefully designed parallel abstraction of heterogeneous hardware - a hierarchical dataflow graph with shared memory and vector instructions - that is able to capture the parallelism in a wide range of popular parallel hardware. We use this abstraction, which we call hVISC, to define a Virtual Instruction Set Architecture (ISA) that aims to address both functional portability and performance portability across heterogeneous systems. hVISC is more general than existing virtual instruction sets such as PTX, HSAIL and SPIR, e.g., it can capture both streaming parallelism and general dataflow parallelism.","PeriodicalId":407717,"journal":{"name":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POSTER - hVISC: A portable abstraction for heterogeneous parallel systems\",\"authors\":\"Prakalp Srivastava, Maria Kotsifakou, Matthew D. Sinclair, Rakesh Komuravelli, Vikram S. Adve, S. Adve\",\"doi\":\"10.1145/2967938.2976039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programming heterogeneous parallel systems can be extremely complex because a single system may include multiple different parallelism models, instruction sets, and memory hierarchies, and different systems use different combinations of these features. We propose a carefully designed parallel abstraction of heterogeneous hardware - a hierarchical dataflow graph with shared memory and vector instructions - that is able to capture the parallelism in a wide range of popular parallel hardware. We use this abstraction, which we call hVISC, to define a Virtual Instruction Set Architecture (ISA) that aims to address both functional portability and performance portability across heterogeneous systems. hVISC is more general than existing virtual instruction sets such as PTX, HSAIL and SPIR, e.g., it can capture both streaming parallelism and general dataflow parallelism.\",\"PeriodicalId\":407717,\"journal\":{\"name\":\"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2967938.2976039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2967938.2976039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
POSTER - hVISC: A portable abstraction for heterogeneous parallel systems
Programming heterogeneous parallel systems can be extremely complex because a single system may include multiple different parallelism models, instruction sets, and memory hierarchies, and different systems use different combinations of these features. We propose a carefully designed parallel abstraction of heterogeneous hardware - a hierarchical dataflow graph with shared memory and vector instructions - that is able to capture the parallelism in a wide range of popular parallel hardware. We use this abstraction, which we call hVISC, to define a Virtual Instruction Set Architecture (ISA) that aims to address both functional portability and performance portability across heterogeneous systems. hVISC is more general than existing virtual instruction sets such as PTX, HSAIL and SPIR, e.g., it can capture both streaming parallelism and general dataflow parallelism.