利用空间信息进行半监督高光谱图像分割

Jun Li, J. Bioucas-Dias, A. Plaza
{"title":"利用空间信息进行半监督高光谱图像分割","authors":"Jun Li, J. Bioucas-Dias, A. Plaza","doi":"10.1109/WHISPERS.2010.5594877","DOIUrl":null,"url":null,"abstract":"We present a new semi-supervised segmentation algorithm suited to hyperspectral images, which takes full advantage of the spectral and spatial information available in the scenes. We mainly focus on problems involving very few labeled samples and a larger set of unlabeled samples. A multinomial logistic regression (MLR) is used to model the posterior class probability distributions, whereas a multilevel logistic level (MLL) prior is adopted to model the spatial information present in class label images. The multinomial logistic regressors are learnt using an expectation maximization (EM) type algorithm, where the class labels of the unlabeled samples are dealt with as unobserved random variables. The expectation step of the EM algorithm is computed using belief propagation (BP). In the maximization step of the EM algorithm, we compute the maximum a posterioi estimate (MAP) estimate of the multinomial logistic regressors. For the segmentation, we compute both the MAP solution and the maxi-mizer of the posterior marginal (MPM) provided by the belief propagation algorithm. We show, using the well-known AVIRIS Indian Pines data, that both solutions exhibit state-of-the-art performance.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Exploiting spatial information in semi-supervised hyperspectral image segmentation\",\"authors\":\"Jun Li, J. Bioucas-Dias, A. Plaza\",\"doi\":\"10.1109/WHISPERS.2010.5594877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new semi-supervised segmentation algorithm suited to hyperspectral images, which takes full advantage of the spectral and spatial information available in the scenes. We mainly focus on problems involving very few labeled samples and a larger set of unlabeled samples. A multinomial logistic regression (MLR) is used to model the posterior class probability distributions, whereas a multilevel logistic level (MLL) prior is adopted to model the spatial information present in class label images. The multinomial logistic regressors are learnt using an expectation maximization (EM) type algorithm, where the class labels of the unlabeled samples are dealt with as unobserved random variables. The expectation step of the EM algorithm is computed using belief propagation (BP). In the maximization step of the EM algorithm, we compute the maximum a posterioi estimate (MAP) estimate of the multinomial logistic regressors. For the segmentation, we compute both the MAP solution and the maxi-mizer of the posterior marginal (MPM) provided by the belief propagation algorithm. We show, using the well-known AVIRIS Indian Pines data, that both solutions exhibit state-of-the-art performance.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种适用于高光谱图像的半监督分割算法,该算法充分利用了场景中可用的光谱和空间信息。我们主要关注涉及很少标记样本和大量未标记样本的问题。采用多项逻辑回归(MLR)对后验类概率分布进行建模,采用多层逻辑水平先验(MLL)对类标签图像中的空间信息进行建模。使用期望最大化(EM)类型算法学习多项逻辑回归量,其中未标记样本的类标签作为未观察到的随机变量处理。EM算法的期望步长采用信念传播(BP)方法计算。在EM算法的最大化步骤中,我们计算多项逻辑回归量的最大后验估计(MAP)估计。对于分割,我们计算了MAP解和由信念传播算法提供的后验边际(MPM)最大值。我们使用著名的AVIRIS印第安松数据显示,这两种解决方案都表现出最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting spatial information in semi-supervised hyperspectral image segmentation
We present a new semi-supervised segmentation algorithm suited to hyperspectral images, which takes full advantage of the spectral and spatial information available in the scenes. We mainly focus on problems involving very few labeled samples and a larger set of unlabeled samples. A multinomial logistic regression (MLR) is used to model the posterior class probability distributions, whereas a multilevel logistic level (MLL) prior is adopted to model the spatial information present in class label images. The multinomial logistic regressors are learnt using an expectation maximization (EM) type algorithm, where the class labels of the unlabeled samples are dealt with as unobserved random variables. The expectation step of the EM algorithm is computed using belief propagation (BP). In the maximization step of the EM algorithm, we compute the maximum a posterioi estimate (MAP) estimate of the multinomial logistic regressors. For the segmentation, we compute both the MAP solution and the maxi-mizer of the posterior marginal (MPM) provided by the belief propagation algorithm. We show, using the well-known AVIRIS Indian Pines data, that both solutions exhibit state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信