循环流化床锅炉燃料成分在线估计

E. Ikonen, Markus Neuvonen, István Selek, Mikko Salo, Mika Liukkonen
{"title":"循环流化床锅炉燃料成分在线估计","authors":"E. Ikonen, Markus Neuvonen, István Selek, Mikko Salo, Mika Liukkonen","doi":"10.1109/Control55989.2022.9781460","DOIUrl":null,"url":null,"abstract":"Estimation of power plant fuel input fractions based on unscented Kalman filtering using a first principles simulation model of the furnace is considered. The approach is described, together with experimental results using data from a full scale circulating fluidized bed power plant. The results encourage the fusion of machine learning and physical models in monitoring of industrial processes.","PeriodicalId":101892,"journal":{"name":"2022 UKACC 13th International Conference on Control (CONTROL)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-line estimation of circulating fluidized bed boiler fuel composition\",\"authors\":\"E. Ikonen, Markus Neuvonen, István Selek, Mikko Salo, Mika Liukkonen\",\"doi\":\"10.1109/Control55989.2022.9781460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of power plant fuel input fractions based on unscented Kalman filtering using a first principles simulation model of the furnace is considered. The approach is described, together with experimental results using data from a full scale circulating fluidized bed power plant. The results encourage the fusion of machine learning and physical models in monitoring of industrial processes.\",\"PeriodicalId\":101892,\"journal\":{\"name\":\"2022 UKACC 13th International Conference on Control (CONTROL)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 UKACC 13th International Conference on Control (CONTROL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Control55989.2022.9781460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 UKACC 13th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Control55989.2022.9781460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用炉膛第一性原理仿真模型,研究了基于无气味卡尔曼滤波的电厂燃料输入馏分估计。本文介绍了该方法,并给出了一个大型循环流化床电厂的实验结果。研究结果鼓励机器学习和物理模型在工业过程监控中的融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line estimation of circulating fluidized bed boiler fuel composition
Estimation of power plant fuel input fractions based on unscented Kalman filtering using a first principles simulation model of the furnace is considered. The approach is described, together with experimental results using data from a full scale circulating fluidized bed power plant. The results encourage the fusion of machine learning and physical models in monitoring of industrial processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信