E. Ikonen, Markus Neuvonen, István Selek, Mikko Salo, Mika Liukkonen
{"title":"循环流化床锅炉燃料成分在线估计","authors":"E. Ikonen, Markus Neuvonen, István Selek, Mikko Salo, Mika Liukkonen","doi":"10.1109/Control55989.2022.9781460","DOIUrl":null,"url":null,"abstract":"Estimation of power plant fuel input fractions based on unscented Kalman filtering using a first principles simulation model of the furnace is considered. The approach is described, together with experimental results using data from a full scale circulating fluidized bed power plant. The results encourage the fusion of machine learning and physical models in monitoring of industrial processes.","PeriodicalId":101892,"journal":{"name":"2022 UKACC 13th International Conference on Control (CONTROL)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-line estimation of circulating fluidized bed boiler fuel composition\",\"authors\":\"E. Ikonen, Markus Neuvonen, István Selek, Mikko Salo, Mika Liukkonen\",\"doi\":\"10.1109/Control55989.2022.9781460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of power plant fuel input fractions based on unscented Kalman filtering using a first principles simulation model of the furnace is considered. The approach is described, together with experimental results using data from a full scale circulating fluidized bed power plant. The results encourage the fusion of machine learning and physical models in monitoring of industrial processes.\",\"PeriodicalId\":101892,\"journal\":{\"name\":\"2022 UKACC 13th International Conference on Control (CONTROL)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 UKACC 13th International Conference on Control (CONTROL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Control55989.2022.9781460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 UKACC 13th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Control55989.2022.9781460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-line estimation of circulating fluidized bed boiler fuel composition
Estimation of power plant fuel input fractions based on unscented Kalman filtering using a first principles simulation model of the furnace is considered. The approach is described, together with experimental results using data from a full scale circulating fluidized bed power plant. The results encourage the fusion of machine learning and physical models in monitoring of industrial processes.