全球气候变化:评估冰盖和冰川变化作用的重要性

E. McBean
{"title":"全球气候变化:评估冰盖和冰川变化作用的重要性","authors":"E. McBean","doi":"10.3808/jeil.202100061","DOIUrl":null,"url":null,"abstract":"Issues of water security are rapidly becoming more widely recognized as impacted. Increased levels of carbon dioxide are clearly evident and long-term temperature increases are clearly evident. These indicators are being used to compile evidence that sea level rise in the future will be between 0.3 and 1.0 m by 2100 and, combined with more severe storms along coastlines, will translate into increasing challenges for coastal cities. The enormous glaciers in Greenland and Antarctica will continue to contribute to sea level rise but fortunately, at modest levels, for thousands of years. On the other hand, land-based glaciers will continue to become depleted and the ramifications to agricultural practices are expected to be profound, with situations of significant percentages of the world’s land-based glaciers being lost by 2100. Further, the disappearance rate of the Arctic Ocean ice cover is already profoundly evident, with losses of ice cover of about 13.1 percent per decade now occurring. Rates of warming in the Arctic are increasing at two to three times the global annual average and warrant further forecasting of the implications. With the reduced ice cover, the water in the Arctic Ocean is now absorbing the energy from the sun, not reflecting the sun’s energy, thereby accelerating further ice cover melting. The result is that the jet stream is weakening and evidence is mounting that there will be increased excursions of the polar vortex causing very cold weather extremes in northern hemisphere areas.","PeriodicalId":143718,"journal":{"name":"Journal of Environmental Informatics Letters","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Climate Change: Assessing the Importance of the Roles of Ice Cover and Glacial Changes\",\"authors\":\"E. McBean\",\"doi\":\"10.3808/jeil.202100061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Issues of water security are rapidly becoming more widely recognized as impacted. Increased levels of carbon dioxide are clearly evident and long-term temperature increases are clearly evident. These indicators are being used to compile evidence that sea level rise in the future will be between 0.3 and 1.0 m by 2100 and, combined with more severe storms along coastlines, will translate into increasing challenges for coastal cities. The enormous glaciers in Greenland and Antarctica will continue to contribute to sea level rise but fortunately, at modest levels, for thousands of years. On the other hand, land-based glaciers will continue to become depleted and the ramifications to agricultural practices are expected to be profound, with situations of significant percentages of the world’s land-based glaciers being lost by 2100. Further, the disappearance rate of the Arctic Ocean ice cover is already profoundly evident, with losses of ice cover of about 13.1 percent per decade now occurring. Rates of warming in the Arctic are increasing at two to three times the global annual average and warrant further forecasting of the implications. With the reduced ice cover, the water in the Arctic Ocean is now absorbing the energy from the sun, not reflecting the sun’s energy, thereby accelerating further ice cover melting. The result is that the jet stream is weakening and evidence is mounting that there will be increased excursions of the polar vortex causing very cold weather extremes in northern hemisphere areas.\",\"PeriodicalId\":143718,\"journal\":{\"name\":\"Journal of Environmental Informatics Letters\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Informatics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3808/jeil.202100061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jeil.202100061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水安全问题正迅速被更广泛地认识到受到影响。二氧化碳含量的增加是显而易见的,长期的温度升高也是显而易见的。这些指标被用来编制证据,表明到2100年,未来海平面将上升0.3至1.0米,再加上沿海地区更严重的风暴,将给沿海城市带来越来越大的挑战。格陵兰岛和南极洲的巨大冰川将继续导致海平面上升,但幸运的是,在数千年内,海平面的上升幅度不大。另一方面,陆地冰川将继续枯竭,预计对农业生产的影响将是深远的,到2100年,世界上很大比例的陆地冰川将消失。此外,北冰洋冰盖的消失速度已经非常明显,目前正在以每十年13.1%的速度消失。北极地区的变暖速度是全球年平均速度的两到三倍,因此有必要进一步预测其影响。随着冰盖的减少,北冰洋的水现在正在吸收来自太阳的能量,而不是反射太阳的能量,从而加速了冰盖的进一步融化。其结果是,急流正在减弱,越来越多的证据表明,极地涡旋的移动将会增加,导致北半球地区的极端寒冷天气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Climate Change: Assessing the Importance of the Roles of Ice Cover and Glacial Changes
Issues of water security are rapidly becoming more widely recognized as impacted. Increased levels of carbon dioxide are clearly evident and long-term temperature increases are clearly evident. These indicators are being used to compile evidence that sea level rise in the future will be between 0.3 and 1.0 m by 2100 and, combined with more severe storms along coastlines, will translate into increasing challenges for coastal cities. The enormous glaciers in Greenland and Antarctica will continue to contribute to sea level rise but fortunately, at modest levels, for thousands of years. On the other hand, land-based glaciers will continue to become depleted and the ramifications to agricultural practices are expected to be profound, with situations of significant percentages of the world’s land-based glaciers being lost by 2100. Further, the disappearance rate of the Arctic Ocean ice cover is already profoundly evident, with losses of ice cover of about 13.1 percent per decade now occurring. Rates of warming in the Arctic are increasing at two to three times the global annual average and warrant further forecasting of the implications. With the reduced ice cover, the water in the Arctic Ocean is now absorbing the energy from the sun, not reflecting the sun’s energy, thereby accelerating further ice cover melting. The result is that the jet stream is weakening and evidence is mounting that there will be increased excursions of the polar vortex causing very cold weather extremes in northern hemisphere areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信