基于深度梯度的远景图像重叠前景目标分割

A. Störmer, M. Hofmann, G. Rigoll
{"title":"基于深度梯度的远景图像重叠前景目标分割","authors":"A. Störmer, M. Hofmann, G. Rigoll","doi":"10.1109/ICIF.2010.5712108","DOIUrl":null,"url":null,"abstract":"Using standard background modeling approaches, close or overlapping objects are often detected as a single blob. In this paper we propose a new and effective method to distinguish between overlapping foreground objects in data obtained from a time of flight sensor. For this we use fusion of the infrared and the range data channels. In addition a further processing step is introduced to evaluate if connected components should be further divided. This is done using nonmaximum suppression on strong depth gradients.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Depth gradient based segmentation of overlapping foreground objects in range images\",\"authors\":\"A. Störmer, M. Hofmann, G. Rigoll\",\"doi\":\"10.1109/ICIF.2010.5712108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using standard background modeling approaches, close or overlapping objects are often detected as a single blob. In this paper we propose a new and effective method to distinguish between overlapping foreground objects in data obtained from a time of flight sensor. For this we use fusion of the infrared and the range data channels. In addition a further processing step is introduced to evaluate if connected components should be further divided. This is done using nonmaximum suppression on strong depth gradients.\",\"PeriodicalId\":341446,\"journal\":{\"name\":\"2010 13th International Conference on Information Fusion\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2010.5712108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5712108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

使用标准的背景建模方法,接近或重叠的对象通常被检测为单个blob。本文提出了一种新的、有效的方法来区分飞行时间传感器数据中重叠的前景目标。为此,我们采用了红外和距离数据通道的融合。此外,还引入了进一步的处理步骤来评估是否应进一步划分连接的组件。这是在强深度梯度上使用非最大抑制来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth gradient based segmentation of overlapping foreground objects in range images
Using standard background modeling approaches, close or overlapping objects are often detected as a single blob. In this paper we propose a new and effective method to distinguish between overlapping foreground objects in data obtained from a time of flight sensor. For this we use fusion of the infrared and the range data channels. In addition a further processing step is introduced to evaluate if connected components should be further divided. This is done using nonmaximum suppression on strong depth gradients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信