联合框架和高斯选择的文本独立说话人验证

R. Saeidi, T. Kinnunen, Hamid Reza Mohammadi, R. Rodman, P. Fränti
{"title":"联合框架和高斯选择的文本独立说话人验证","authors":"R. Saeidi, T. Kinnunen, Hamid Reza Mohammadi, R. Rodman, P. Fränti","doi":"10.1109/ICASSP.2010.5495576","DOIUrl":null,"url":null,"abstract":"Gaussian selection is a technique applied in the GMM-UBM framework to accelerate score calculation. We have recently introduced a novel Gaussian selection method known as sorted GMM (SGMM). SGMM uses scalar-indexing of the universal background model mean vectors to achieve fast search of the top-scoring Gaussians. In the present work we extend this method by using 2-dimensional indexing, which leads to simultaneous frame and Gaussian selection. Our results on the NIST 2002 speaker recognition evaluation corpus indicate that both the 1- and 2- dimensional SGMMs outperform frame decimation and temporal tracking of top-scoring Gaussians by a wide margin (in terms of Gaussian computations relative to GMM-UBM as baseline).","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Joint frame and Gaussian selection for text independent speaker verification\",\"authors\":\"R. Saeidi, T. Kinnunen, Hamid Reza Mohammadi, R. Rodman, P. Fränti\",\"doi\":\"10.1109/ICASSP.2010.5495576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian selection is a technique applied in the GMM-UBM framework to accelerate score calculation. We have recently introduced a novel Gaussian selection method known as sorted GMM (SGMM). SGMM uses scalar-indexing of the universal background model mean vectors to achieve fast search of the top-scoring Gaussians. In the present work we extend this method by using 2-dimensional indexing, which leads to simultaneous frame and Gaussian selection. Our results on the NIST 2002 speaker recognition evaluation corpus indicate that both the 1- and 2- dimensional SGMMs outperform frame decimation and temporal tracking of top-scoring Gaussians by a wide margin (in terms of Gaussian computations relative to GMM-UBM as baseline).\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5495576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

高斯选择是在GMM-UBM框架中应用的一种加速分数计算的技术。我们最近介绍了一种新的高斯选择方法,称为排序GMM (SGMM)。SGMM使用通用背景模型均值向量的标量索引来实现对得分最高的高斯分布的快速搜索。在本工作中,我们通过使用二维索引扩展了该方法,从而导致同时帧和高斯选择。我们在NIST 2002说话人识别评估语料库上的结果表明,1维和2维SGMMs都比得分最高的高斯算法的帧抽取和时间跟踪表现要好得多(就高斯计算相对于ggm - ubm作为基线而言)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint frame and Gaussian selection for text independent speaker verification
Gaussian selection is a technique applied in the GMM-UBM framework to accelerate score calculation. We have recently introduced a novel Gaussian selection method known as sorted GMM (SGMM). SGMM uses scalar-indexing of the universal background model mean vectors to achieve fast search of the top-scoring Gaussians. In the present work we extend this method by using 2-dimensional indexing, which leads to simultaneous frame and Gaussian selection. Our results on the NIST 2002 speaker recognition evaluation corpus indicate that both the 1- and 2- dimensional SGMMs outperform frame decimation and temporal tracking of top-scoring Gaussians by a wide margin (in terms of Gaussian computations relative to GMM-UBM as baseline).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信