一种基于学习的形式验证感避算法的指导选择机制

Swee Balachandran, Viren Bajaj, M. A. Feliú, C. Muñoz, M. Consiglio
{"title":"一种基于学习的形式验证感避算法的指导选择机制","authors":"Swee Balachandran, Viren Bajaj, M. A. Feliú, C. Muñoz, M. Consiglio","doi":"10.1109/DASC43569.2019.9081784","DOIUrl":null,"url":null,"abstract":"This paper describes a learning-based strategy for selecting conflict avoidance maneuvers for autonomous unmanned aircraft systems. The selected maneuvers are provided by a formally verified algorithm and they are guaranteed to solve any impending conflict under general assumptions about aircraft dynamics. The decision-making logic that selects the appropriate maneuvers is encoded in a stochastic policy encapsulated as a neural network. The network's parameters are optimized to maximize a reward function. The reward function penalizes loss of separation with other aircraft while rewarding resolutions that result in minimum excursions from the nominal flight plan. This paper provides a description of the technique and presents preliminary simulation results.","PeriodicalId":129864,"journal":{"name":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Learning-Based Guidance Selection Mechanism for a Formally Verified Sense and Avoid Algorithm\",\"authors\":\"Swee Balachandran, Viren Bajaj, M. A. Feliú, C. Muñoz, M. Consiglio\",\"doi\":\"10.1109/DASC43569.2019.9081784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a learning-based strategy for selecting conflict avoidance maneuvers for autonomous unmanned aircraft systems. The selected maneuvers are provided by a formally verified algorithm and they are guaranteed to solve any impending conflict under general assumptions about aircraft dynamics. The decision-making logic that selects the appropriate maneuvers is encoded in a stochastic policy encapsulated as a neural network. The network's parameters are optimized to maximize a reward function. The reward function penalizes loss of separation with other aircraft while rewarding resolutions that result in minimum excursions from the nominal flight plan. This paper provides a description of the technique and presents preliminary simulation results.\",\"PeriodicalId\":129864,\"journal\":{\"name\":\"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC43569.2019.9081784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC43569.2019.9081784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于学习的自主无人机系统避碰机动选择策略。所选择的机动由经过正式验证的算法提供,并保证在一般飞机动力学假设下解决任何即将发生的冲突。选择适当机动的决策逻辑编码在随机策略中,封装为神经网络。网络的参数被优化以使奖励函数最大化。奖励函数惩罚与其他飞机分离的损失,同时奖励导致最小偏离标称飞行计划的决议。本文对该技术进行了描述,并给出了初步的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Learning-Based Guidance Selection Mechanism for a Formally Verified Sense and Avoid Algorithm
This paper describes a learning-based strategy for selecting conflict avoidance maneuvers for autonomous unmanned aircraft systems. The selected maneuvers are provided by a formally verified algorithm and they are guaranteed to solve any impending conflict under general assumptions about aircraft dynamics. The decision-making logic that selects the appropriate maneuvers is encoded in a stochastic policy encapsulated as a neural network. The network's parameters are optimized to maximize a reward function. The reward function penalizes loss of separation with other aircraft while rewarding resolutions that result in minimum excursions from the nominal flight plan. This paper provides a description of the technique and presents preliminary simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信