改进的性别自动分类特征选择

Yaw Chang, Yishi Wang, K. Ricanek, Cuixian Chen
{"title":"改进的性别自动分类特征选择","authors":"Yaw Chang, Yishi Wang, K. Ricanek, Cuixian Chen","doi":"10.1109/CIBIM.2011.5949221","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate the need for dimensionality reduction to mitigate model overfitting on the nontrivial problem of gender classification from digital images. In (his study we explore four feature selection schemes using Genetic Algorithm, Memetic Algorithms, and Random Forest, which are fed to a nonlinear support vector machine (SVM) for final classification. The performance of the model (feature) selection approaches are evaluated against two distinct datasets of facial images: FG-NET which contains toddlers to seniors and the UIUC-PAL which contains faces of adults up to seniors. This work demonstrates that feature selection can, and does, improve performance of an SVM based gender classification system significantly.","PeriodicalId":396721,"journal":{"name":"2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Feature selection for improved automatic gender classification\",\"authors\":\"Yaw Chang, Yishi Wang, K. Ricanek, Cuixian Chen\",\"doi\":\"10.1109/CIBIM.2011.5949221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate the need for dimensionality reduction to mitigate model overfitting on the nontrivial problem of gender classification from digital images. In (his study we explore four feature selection schemes using Genetic Algorithm, Memetic Algorithms, and Random Forest, which are fed to a nonlinear support vector machine (SVM) for final classification. The performance of the model (feature) selection approaches are evaluated against two distinct datasets of facial images: FG-NET which contains toddlers to seniors and the UIUC-PAL which contains faces of adults up to seniors. This work demonstrates that feature selection can, and does, improve performance of an SVM based gender classification system significantly.\",\"PeriodicalId\":396721,\"journal\":{\"name\":\"2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2011.5949221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2011.5949221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们证明了在数字图像性别分类的非平凡问题上,需要降维来缓解模型过拟合。在他的研究中,我们探索了四种使用遗传算法、模因算法和随机森林的特征选择方案,这些方案被馈送到非线性支持向量机(SVM)进行最终分类。模型(特征)选择方法的性能是针对两个不同的面部图像数据集进行评估的:FG-NET包含幼儿到老年人的面部图像,UIUC-PAL包含成年人到老年人的面部图像。这项工作表明,特征选择可以并且确实显著提高基于SVM的性别分类系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection for improved automatic gender classification
In this paper, we demonstrate the need for dimensionality reduction to mitigate model overfitting on the nontrivial problem of gender classification from digital images. In (his study we explore four feature selection schemes using Genetic Algorithm, Memetic Algorithms, and Random Forest, which are fed to a nonlinear support vector machine (SVM) for final classification. The performance of the model (feature) selection approaches are evaluated against two distinct datasets of facial images: FG-NET which contains toddlers to seniors and the UIUC-PAL which contains faces of adults up to seniors. This work demonstrates that feature selection can, and does, improve performance of an SVM based gender classification system significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信