和谐搜索增强最优路径森林聚类及其在计算机网络入侵检测中的应用

K. Costa, C. R. Pereira, R. Nakamura, Luís A. M. Pereira, J. Papa
{"title":"和谐搜索增强最优路径森林聚类及其在计算机网络入侵检测中的应用","authors":"K. Costa, C. R. Pereira, R. Nakamura, Luís A. M. Pereira, J. Papa","doi":"10.1109/CASoN.2012.6412399","DOIUrl":null,"url":null,"abstract":"In this paper we propose a nature-inspired approach that can boost the Optimum-Path Forest (OPF) clustering algorithm by optimizing its parameters in a discrete lattice. The experiments in two public datasets have shown that the proposed algorithm can achieve similar parameters' values compared to the exhaustive search. Although, the proposed technique is faster than the traditional one, being interesting for intrusion detection in large scale traffic networks.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Boosting Optimum-Path Forest clustering through harmony Search and its applications for intrusion detection in computer networks\",\"authors\":\"K. Costa, C. R. Pereira, R. Nakamura, Luís A. M. Pereira, J. Papa\",\"doi\":\"10.1109/CASoN.2012.6412399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a nature-inspired approach that can boost the Optimum-Path Forest (OPF) clustering algorithm by optimizing its parameters in a discrete lattice. The experiments in two public datasets have shown that the proposed algorithm can achieve similar parameters' values compared to the exhaustive search. Although, the proposed technique is faster than the traditional one, being interesting for intrusion detection in large scale traffic networks.\",\"PeriodicalId\":431370,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2012.6412399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一种自然启发的方法,可以通过在离散晶格中优化最优路径森林(OPF)聚类算法的参数来增强它。在两个公共数据集上的实验表明,与穷举搜索相比,该算法可以获得相似的参数值。虽然该方法比传统方法速度快,但对于大规模流量网络中的入侵检测很有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting Optimum-Path Forest clustering through harmony Search and its applications for intrusion detection in computer networks
In this paper we propose a nature-inspired approach that can boost the Optimum-Path Forest (OPF) clustering algorithm by optimizing its parameters in a discrete lattice. The experiments in two public datasets have shown that the proposed algorithm can achieve similar parameters' values compared to the exhaustive search. Although, the proposed technique is faster than the traditional one, being interesting for intrusion detection in large scale traffic networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信