带分数阶导数的倒向热方程的Levenberg-Marquardt正则化

P. Pornsawad, C. Böckmann, Wannapa Panitsupakamon
{"title":"带分数阶导数的倒向热方程的Levenberg-Marquardt正则化","authors":"P. Pornsawad, C. Böckmann, Wannapa Panitsupakamon","doi":"10.1553/etna_vol57s67","DOIUrl":null,"url":null,"abstract":". The backward heat problem with time-fractional derivative in Caputo’s sense is studied. The inverse problem is severely ill-posed in the case when the fractional order is close to unity. A Levenberg–Marquardt method with a new a posteriori stopping rule is investigated. We show that optimal order can be obtained for the proposed method under a Hölder-type source condition. Numerical examples for one and two dimensions are provided.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Levenberg–Marquardt regularization for the backward heat equation with fractional derivative\",\"authors\":\"P. Pornsawad, C. Böckmann, Wannapa Panitsupakamon\",\"doi\":\"10.1553/etna_vol57s67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The backward heat problem with time-fractional derivative in Caputo’s sense is studied. The inverse problem is severely ill-posed in the case when the fractional order is close to unity. A Levenberg–Marquardt method with a new a posteriori stopping rule is investigated. We show that optimal order can be obtained for the proposed method under a Hölder-type source condition. Numerical examples for one and two dimensions are provided.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol57s67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol57s67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 研究了卡普托意义上具有时间分数阶导数的后向热问题。当分数阶接近于单位时,反问题是严重病态的。研究了一种具有新的后验停止规则的Levenberg-Marquardt方法。我们证明了在Hölder-type源条件下,所提出的方法可以获得最优阶。给出了一维和二维的数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Levenberg–Marquardt regularization for the backward heat equation with fractional derivative
. The backward heat problem with time-fractional derivative in Caputo’s sense is studied. The inverse problem is severely ill-posed in the case when the fractional order is close to unity. A Levenberg–Marquardt method with a new a posteriori stopping rule is investigated. We show that optimal order can be obtained for the proposed method under a Hölder-type source condition. Numerical examples for one and two dimensions are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信