氢役高周抗疲劳压力容器的构造方法

Pooya Mahmoudian
{"title":"氢役高周抗疲劳压力容器的构造方法","authors":"Pooya Mahmoudian","doi":"10.1115/IMECE2018-86292","DOIUrl":null,"url":null,"abstract":"Currently, pressure vessels that operate in hydrogen service and subjected to fatigue must be designed using a defect tolerant design procedure. This means that first the fracture mechanics properties of the material being considered must be measured in hydrogen at the maximum service pressure. The properties are fatigue crack propagation properties and threshold stress intensity factor for hydrogen embrittlement (KIHE). With these properties, a fatigue crack propagation life can be estimated assuming an initial crack size and geometry and growing this defect to failure. The property measurements are costly and can only be performed at a few laboratories. Furthermore, the resulting lives are usually very short because of the assumed initial crack size. These things limit the application of this design method to lower cycle or static loading applications. This work introduces a cost-effective method of design and construction of pressure vessels for high cycle use in hydrogen service at pressures below 40,000 psi that eliminates the need for determining fracture mechanics properties in hydrogen environment. The method uses shrink fit construction of a liner inside a jacket. The method requires that when the pressure is applied, the magnitude of the resultant stress at the pressure boundary of the liner is more compressive than the magnitude of the applied pressure and the maximum allowed size of defect in the jacket at the interface between the jacket and the liner is such that when the cyclic stress is applied the resultant fatigue loading of that defect at that location to be less than the threshold value for growth of that defect.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method of Construction for High Cycle Fatigue Resistant Pressure Vessels in Hydrogen Service\",\"authors\":\"Pooya Mahmoudian\",\"doi\":\"10.1115/IMECE2018-86292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, pressure vessels that operate in hydrogen service and subjected to fatigue must be designed using a defect tolerant design procedure. This means that first the fracture mechanics properties of the material being considered must be measured in hydrogen at the maximum service pressure. The properties are fatigue crack propagation properties and threshold stress intensity factor for hydrogen embrittlement (KIHE). With these properties, a fatigue crack propagation life can be estimated assuming an initial crack size and geometry and growing this defect to failure. The property measurements are costly and can only be performed at a few laboratories. Furthermore, the resulting lives are usually very short because of the assumed initial crack size. These things limit the application of this design method to lower cycle or static loading applications. This work introduces a cost-effective method of design and construction of pressure vessels for high cycle use in hydrogen service at pressures below 40,000 psi that eliminates the need for determining fracture mechanics properties in hydrogen environment. The method uses shrink fit construction of a liner inside a jacket. The method requires that when the pressure is applied, the magnitude of the resultant stress at the pressure boundary of the liner is more compressive than the magnitude of the applied pressure and the maximum allowed size of defect in the jacket at the interface between the jacket and the liner is such that when the cyclic stress is applied the resultant fatigue loading of that defect at that location to be less than the threshold value for growth of that defect.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,在氢气服务中运行并遭受疲劳的压力容器必须使用缺陷容忍设计程序进行设计。这意味着,首先,材料的断裂力学性能必须在最大使用压力下在氢气中测量。研究了疲劳裂纹扩展特性和氢脆阈值应力强度因子(KIHE)。利用这些特性,可以在假设初始裂纹尺寸和几何形状并将其扩展到失效的情况下估计疲劳裂纹扩展寿命。性能测量是昂贵的,只能在少数实验室进行。此外,由于假定的初始裂纹尺寸,由此产生的寿命通常很短。这些限制了这种设计方法在低周期或静态载荷应用中的应用。这项工作介绍了一种具有成本效益的设计和制造压力容器的方法,该方法适用于压力低于40000 psi的高循环氢气服务,无需确定氢气环境下的断裂力学特性。该方法采用夹套内胆的收缩配合结构。方法要求的压力时,压力边界的合成应力的大小的衬垫压比施加压力的大小和缺陷的最大允许大小的夹克外套之间的接口和衬垫时,应用循环应力产生的疲劳载荷的缺陷在这个位置的增长小于阈值的缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method of Construction for High Cycle Fatigue Resistant Pressure Vessels in Hydrogen Service
Currently, pressure vessels that operate in hydrogen service and subjected to fatigue must be designed using a defect tolerant design procedure. This means that first the fracture mechanics properties of the material being considered must be measured in hydrogen at the maximum service pressure. The properties are fatigue crack propagation properties and threshold stress intensity factor for hydrogen embrittlement (KIHE). With these properties, a fatigue crack propagation life can be estimated assuming an initial crack size and geometry and growing this defect to failure. The property measurements are costly and can only be performed at a few laboratories. Furthermore, the resulting lives are usually very short because of the assumed initial crack size. These things limit the application of this design method to lower cycle or static loading applications. This work introduces a cost-effective method of design and construction of pressure vessels for high cycle use in hydrogen service at pressures below 40,000 psi that eliminates the need for determining fracture mechanics properties in hydrogen environment. The method uses shrink fit construction of a liner inside a jacket. The method requires that when the pressure is applied, the magnitude of the resultant stress at the pressure boundary of the liner is more compressive than the magnitude of the applied pressure and the maximum allowed size of defect in the jacket at the interface between the jacket and the liner is such that when the cyclic stress is applied the resultant fatigue loading of that defect at that location to be less than the threshold value for growth of that defect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信