Polaris中服务水平目标感知自动伸缩的高级度量:性能评估

Nicolò Bartelucci, P. Bellavista, Thomas W. Pusztai, Andrea Morichetta, S. Dustdar
{"title":"Polaris中服务水平目标感知自动伸缩的高级度量:性能评估","authors":"Nicolò Bartelucci, P. Bellavista, Thomas W. Pusztai, Andrea Morichetta, S. Dustdar","doi":"10.1109/icfec54809.2022.00017","DOIUrl":null,"url":null,"abstract":"With the increasing complexity, requirements, and variability of cloud services, it is not always easy to find the right static/dynamic thresholds for the optimal configuration of low-level metrics for autoscaling resource management decisions. A Service Level Objective (SLO) is a high-level commitment to maintaining a specific state of a service in a given period, within a Service Level Agreement (SLA): the goal is to respect a given metric, like uptime or response time within given time or accuracy constraints. In this paper, we show the advantages and present the progress of an original SLO-aware autoscaler for the Polaris framework. In addition, the paper contributes to the literature in the field by proposing novel experimental results comparing the Polaris autoscaling performance, based on highlevel latency SLO, and the performance of a low-level average CPU-based SLO, implemented by the Kubernetes Horizontal Pod Autoscaler.","PeriodicalId":423599,"journal":{"name":"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Level Metrics for Service Level Objective-aware Autoscaling in Polaris: a Performance Evaluation\",\"authors\":\"Nicolò Bartelucci, P. Bellavista, Thomas W. Pusztai, Andrea Morichetta, S. Dustdar\",\"doi\":\"10.1109/icfec54809.2022.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing complexity, requirements, and variability of cloud services, it is not always easy to find the right static/dynamic thresholds for the optimal configuration of low-level metrics for autoscaling resource management decisions. A Service Level Objective (SLO) is a high-level commitment to maintaining a specific state of a service in a given period, within a Service Level Agreement (SLA): the goal is to respect a given metric, like uptime or response time within given time or accuracy constraints. In this paper, we show the advantages and present the progress of an original SLO-aware autoscaler for the Polaris framework. In addition, the paper contributes to the literature in the field by proposing novel experimental results comparing the Polaris autoscaling performance, based on highlevel latency SLO, and the performance of a low-level average CPU-based SLO, implemented by the Kubernetes Horizontal Pod Autoscaler.\",\"PeriodicalId\":423599,\"journal\":{\"name\":\"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icfec54809.2022.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icfec54809.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着云服务的复杂性、需求和可变性的增加,为自动伸缩资源管理决策的底层指标的最佳配置找到合适的静态/动态阈值并不总是那么容易。服务水平目标(Service Level Objective, SLO)是在服务水平协议(Service Level Agreement, SLA)中在给定时间段内维护服务的特定状态的高级承诺:目标是尊重给定的度量,如在给定时间或精度约束下的正常运行时间或响应时间。在本文中,我们展示了其优点,并介绍了一种用于Polaris框架的原始慢速感知自动缩放器的进展。此外,本文通过提出新颖的实验结果来比较基于高级别延迟SLO的Polaris自动缩放性能和由Kubernetes Horizontal Pod Autoscaler实现的基于cpu的低级别平均SLO的性能,从而为该领域的文献做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Level Metrics for Service Level Objective-aware Autoscaling in Polaris: a Performance Evaluation
With the increasing complexity, requirements, and variability of cloud services, it is not always easy to find the right static/dynamic thresholds for the optimal configuration of low-level metrics for autoscaling resource management decisions. A Service Level Objective (SLO) is a high-level commitment to maintaining a specific state of a service in a given period, within a Service Level Agreement (SLA): the goal is to respect a given metric, like uptime or response time within given time or accuracy constraints. In this paper, we show the advantages and present the progress of an original SLO-aware autoscaler for the Polaris framework. In addition, the paper contributes to the literature in the field by proposing novel experimental results comparing the Polaris autoscaling performance, based on highlevel latency SLO, and the performance of a low-level average CPU-based SLO, implemented by the Kubernetes Horizontal Pod Autoscaler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信