网络重构预处理:可行性测试与不可行性处理

Annegret K. Wagler, Jan-Thierry Wegener
{"title":"网络重构预处理:可行性测试与不可行性处理","authors":"Annegret K. Wagler, Jan-Thierry Wegener","doi":"10.3233/FI-2014-1138","DOIUrl":null,"url":null,"abstract":"The context of this work is the reconstruction of Petri net models for biological systems from experimental data. Such methods aim at generating all network alternatives fitting the given data. For a successful reconstruction, the data need to satisfy two properties: reproducibility and monotonicity. In this paper, we focus on a necessary preprocessing step for a recent reconstruction approach. We test the data for reproducibility, provide a feasibility test to detect cases where the reconstruction from the given data may fail, and provide a strategy to cope with the infeasible cases. After having performed the preprocessing step, it is guaranteed that the (given or modified) data are appropriate as input for the main reconstruction algorithm.","PeriodicalId":286395,"journal":{"name":"International Workshop on Concurrency, Specification and Programming","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preprocessing for Network Reconstruction: Feasibility Test and Handling Infeasibility\",\"authors\":\"Annegret K. Wagler, Jan-Thierry Wegener\",\"doi\":\"10.3233/FI-2014-1138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The context of this work is the reconstruction of Petri net models for biological systems from experimental data. Such methods aim at generating all network alternatives fitting the given data. For a successful reconstruction, the data need to satisfy two properties: reproducibility and monotonicity. In this paper, we focus on a necessary preprocessing step for a recent reconstruction approach. We test the data for reproducibility, provide a feasibility test to detect cases where the reconstruction from the given data may fail, and provide a strategy to cope with the infeasible cases. After having performed the preprocessing step, it is guaranteed that the (given or modified) data are appropriate as input for the main reconstruction algorithm.\",\"PeriodicalId\":286395,\"journal\":{\"name\":\"International Workshop on Concurrency, Specification and Programming\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Concurrency, Specification and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2014-1138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Concurrency, Specification and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FI-2014-1138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的背景是从实验数据重建生物系统的Petri网模型。这种方法的目的是产生所有的网络替代方案拟合给定的数据。对于成功的重建,数据需要满足两个属性:再现性和单调性。在本文中,我们着重于一个必要的预处理步骤,为最近的重建方法。我们测试了数据的可重复性,提供了一个可行性测试来检测从给定数据重建可能失败的情况,并提供了一个策略来应对不可行的情况。在执行预处理步骤之后,可以保证(给定的或修改的)数据适合作为主重构算法的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preprocessing for Network Reconstruction: Feasibility Test and Handling Infeasibility
The context of this work is the reconstruction of Petri net models for biological systems from experimental data. Such methods aim at generating all network alternatives fitting the given data. For a successful reconstruction, the data need to satisfy two properties: reproducibility and monotonicity. In this paper, we focus on a necessary preprocessing step for a recent reconstruction approach. We test the data for reproducibility, provide a feasibility test to detect cases where the reconstruction from the given data may fail, and provide a strategy to cope with the infeasible cases. After having performed the preprocessing step, it is guaranteed that the (given or modified) data are appropriate as input for the main reconstruction algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信