个性化LinkedIn Feed

D. Agarwal, Bee-Chung Chen, Qi He, Zhenhao Hua, Guy Lebanon, Yiming Ma, Pannagadatta K. Shivaswamy, Hsiao-Ping Tseng, Jaewon Yang, L. Zhang
{"title":"个性化LinkedIn Feed","authors":"D. Agarwal, Bee-Chung Chen, Qi He, Zhenhao Hua, Guy Lebanon, Yiming Ma, Pannagadatta K. Shivaswamy, Hsiao-Ping Tseng, Jaewon Yang, L. Zhang","doi":"10.1145/2783258.2788614","DOIUrl":null,"url":null,"abstract":"LinkedIn dynamically delivers update activities from a user's interpersonal network to more than 300 million members in the personalized feed that ranks activities according their \"relevance\" to the user. This paper discloses the implementation details behind this personalized feed system at LinkedIn which can not be found from related work, and addresses the scalability and data sparsity challenges for deploying the system online. More specifically, we focus on the personalization models by generating three kinds of affinity scores: Viewer-ActivityType Affinity, Viewer-Actor Affinity, and Viewer-Actor-ActivityType Affinity. Extensive experiments based on online bucket tests (A/B experiments) and offline evaluation illustrate the effect of our personalization models in LinkedIn feed.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Personalizing LinkedIn Feed\",\"authors\":\"D. Agarwal, Bee-Chung Chen, Qi He, Zhenhao Hua, Guy Lebanon, Yiming Ma, Pannagadatta K. Shivaswamy, Hsiao-Ping Tseng, Jaewon Yang, L. Zhang\",\"doi\":\"10.1145/2783258.2788614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LinkedIn dynamically delivers update activities from a user's interpersonal network to more than 300 million members in the personalized feed that ranks activities according their \\\"relevance\\\" to the user. This paper discloses the implementation details behind this personalized feed system at LinkedIn which can not be found from related work, and addresses the scalability and data sparsity challenges for deploying the system online. More specifically, we focus on the personalization models by generating three kinds of affinity scores: Viewer-ActivityType Affinity, Viewer-Actor Affinity, and Viewer-Actor-ActivityType Affinity. Extensive experiments based on online bucket tests (A/B experiments) and offline evaluation illustrate the effect of our personalization models in LinkedIn feed.\",\"PeriodicalId\":243428,\"journal\":{\"name\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2788614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2788614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

LinkedIn动态地将用户人际网络中的更新活动发送给超过3亿的个性化信息源,并根据与用户的“相关性”对活动进行排名。本文揭示了LinkedIn个性化feed系统背后的实现细节,这是相关工作中无法找到的,并解决了在线部署系统的可扩展性和数据稀疏性挑战。更具体地说,我们通过生成三种亲和度分数来关注个性化模型:查看者-活动类型亲和度、查看者-参与者亲和度和查看者-参与者-活动类型亲和度。基于在线桶测试(A/B实验)和离线评估的大量实验说明了我们的个性化模型在LinkedIn feed中的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalizing LinkedIn Feed
LinkedIn dynamically delivers update activities from a user's interpersonal network to more than 300 million members in the personalized feed that ranks activities according their "relevance" to the user. This paper discloses the implementation details behind this personalized feed system at LinkedIn which can not be found from related work, and addresses the scalability and data sparsity challenges for deploying the system online. More specifically, we focus on the personalization models by generating three kinds of affinity scores: Viewer-ActivityType Affinity, Viewer-Actor Affinity, and Viewer-Actor-ActivityType Affinity. Extensive experiments based on online bucket tests (A/B experiments) and offline evaluation illustrate the effect of our personalization models in LinkedIn feed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信