基于UKF的低等级IMU视觉辅助导航系统

D. Won, S. Sung, Young Jae Lee
{"title":"基于UKF的低等级IMU视觉辅助导航系统","authors":"D. Won, S. Sung, Young Jae Lee","doi":"10.1109/ICCAS.2010.5670252","DOIUrl":null,"url":null,"abstract":"When integrating single vision sensor and low grade IMU for 6-DOP navigation, nonlinearity of observation model makes a problem to estimate position, velocity and attitude. Conventional Kalman Filter could not estimate states correctly because it uses linearized model. Due to these reasons, nonlinear estimation should be used to figure out the nonlinear characteristics. By applying Unscented Kalman Filter, this paper copes with the nonlinearity. The estimation performance is demonstrated by numerical simulation. The RMS error of estimated position is analyzed by comparing Extended Kalman Filter results.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"UKF based vision aided navigation system with low grade IMU\",\"authors\":\"D. Won, S. Sung, Young Jae Lee\",\"doi\":\"10.1109/ICCAS.2010.5670252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When integrating single vision sensor and low grade IMU for 6-DOP navigation, nonlinearity of observation model makes a problem to estimate position, velocity and attitude. Conventional Kalman Filter could not estimate states correctly because it uses linearized model. Due to these reasons, nonlinear estimation should be used to figure out the nonlinear characteristics. By applying Unscented Kalman Filter, this paper copes with the nonlinearity. The estimation performance is demonstrated by numerical simulation. The RMS error of estimated position is analyzed by comparing Extended Kalman Filter results.\",\"PeriodicalId\":158687,\"journal\":{\"name\":\"ICCAS 2010\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAS 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2010.5670252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5670252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在集成单视觉传感器和低等级IMU进行6-DOP导航时,由于观测模型的非线性导致了位置、速度和姿态的估计问题。传统卡尔曼滤波由于采用线性化模型,不能正确估计状态。由于这些原因,需要使用非线性估计来了解非线性特性。本文采用无气味卡尔曼滤波来处理非线性问题。通过数值仿真验证了该算法的估计性能。通过对扩展卡尔曼滤波结果的比较,分析了估计位置的均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UKF based vision aided navigation system with low grade IMU
When integrating single vision sensor and low grade IMU for 6-DOP navigation, nonlinearity of observation model makes a problem to estimate position, velocity and attitude. Conventional Kalman Filter could not estimate states correctly because it uses linearized model. Due to these reasons, nonlinear estimation should be used to figure out the nonlinear characteristics. By applying Unscented Kalman Filter, this paper copes with the nonlinearity. The estimation performance is demonstrated by numerical simulation. The RMS error of estimated position is analyzed by comparing Extended Kalman Filter results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信