{"title":"层状多孔介质中两相流动的界面动力学","authors":"Aniket S. Ambekar, V. Buwa, J. Phirani","doi":"10.1115/ICNMM2018-7738","DOIUrl":null,"url":null,"abstract":"Immiscible displacement of a non-wetting fluid by a wetting fluid is important for many fields for example, biomedical devices, paper micro-fluidics, oil reservoirs and water aquifers. In a multi-layered porous medium the displacement velocity and relative position of the layers with respect to each other is significant in determining the flow paths of the fluids. Earlier studies on two-layered porous medium indicate presence of different flow regimes in every layer depending upon the velocity. However, the effect of relative positioning of these layers in different flow regimes is still unknown. In the present work we experimentally show that at low velocity, a capillary regime is developed i.e. the wetting fluid front leads in the least permeable layer, while at high velocity the wetting fluid front leads in the highest permeability layer. At all flow rates, the least permeable layer is found to draw fluid from the high permeability layer due to capillary suction. We also show the effect of relative placement of the layers on the interphase dynamics.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interface Dynamics During Two Phase Flow in Stratified Porous Medium\",\"authors\":\"Aniket S. Ambekar, V. Buwa, J. Phirani\",\"doi\":\"10.1115/ICNMM2018-7738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immiscible displacement of a non-wetting fluid by a wetting fluid is important for many fields for example, biomedical devices, paper micro-fluidics, oil reservoirs and water aquifers. In a multi-layered porous medium the displacement velocity and relative position of the layers with respect to each other is significant in determining the flow paths of the fluids. Earlier studies on two-layered porous medium indicate presence of different flow regimes in every layer depending upon the velocity. However, the effect of relative positioning of these layers in different flow regimes is still unknown. In the present work we experimentally show that at low velocity, a capillary regime is developed i.e. the wetting fluid front leads in the least permeable layer, while at high velocity the wetting fluid front leads in the highest permeability layer. At all flow rates, the least permeable layer is found to draw fluid from the high permeability layer due to capillary suction. We also show the effect of relative placement of the layers on the interphase dynamics.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interface Dynamics During Two Phase Flow in Stratified Porous Medium
Immiscible displacement of a non-wetting fluid by a wetting fluid is important for many fields for example, biomedical devices, paper micro-fluidics, oil reservoirs and water aquifers. In a multi-layered porous medium the displacement velocity and relative position of the layers with respect to each other is significant in determining the flow paths of the fluids. Earlier studies on two-layered porous medium indicate presence of different flow regimes in every layer depending upon the velocity. However, the effect of relative positioning of these layers in different flow regimes is still unknown. In the present work we experimentally show that at low velocity, a capillary regime is developed i.e. the wetting fluid front leads in the least permeable layer, while at high velocity the wetting fluid front leads in the highest permeability layer. At all flow rates, the least permeable layer is found to draw fluid from the high permeability layer due to capillary suction. We also show the effect of relative placement of the layers on the interphase dynamics.