{"title":"索拉非尼有帮助吗?:精准医学搜索中的治疗意识重排序","authors":"Maciej Rybiński, Sarvnaz Karimi","doi":"10.1145/3459637.3482220","DOIUrl":null,"url":null,"abstract":"High-quality evidence from the biomedical literature is crucial for decision making of oncologists who treat cancer patients. Search for evidence on a specific treatment for a patient is the challenge set by the precision medicine track of TREC in 2020. To address this challenge, we propose a two-step method to incorporate treatment into the query formulation and ranking. Training of such ranking function uses a zero-shot setup to incorporate the novel focus on treatments which did not exist in any of the previous TREC tracks. Our treatment-aware neural reranking approach, FAT, achieves state-of-the-art effectiveness for TREC Precision Medicine 2020. Our analysis indicates that the BERT-based rerankers automatically learn to score documents through identifying concepts relevant to precision medicine, similar to hand-crafted heuristics successful in the earlier studies.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Will Sorafenib Help?: Treatment-aware Reranking in Precision Medicine Search\",\"authors\":\"Maciej Rybiński, Sarvnaz Karimi\",\"doi\":\"10.1145/3459637.3482220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-quality evidence from the biomedical literature is crucial for decision making of oncologists who treat cancer patients. Search for evidence on a specific treatment for a patient is the challenge set by the precision medicine track of TREC in 2020. To address this challenge, we propose a two-step method to incorporate treatment into the query formulation and ranking. Training of such ranking function uses a zero-shot setup to incorporate the novel focus on treatments which did not exist in any of the previous TREC tracks. Our treatment-aware neural reranking approach, FAT, achieves state-of-the-art effectiveness for TREC Precision Medicine 2020. Our analysis indicates that the BERT-based rerankers automatically learn to score documents through identifying concepts relevant to precision medicine, similar to hand-crafted heuristics successful in the earlier studies.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Will Sorafenib Help?: Treatment-aware Reranking in Precision Medicine Search
High-quality evidence from the biomedical literature is crucial for decision making of oncologists who treat cancer patients. Search for evidence on a specific treatment for a patient is the challenge set by the precision medicine track of TREC in 2020. To address this challenge, we propose a two-step method to incorporate treatment into the query formulation and ranking. Training of such ranking function uses a zero-shot setup to incorporate the novel focus on treatments which did not exist in any of the previous TREC tracks. Our treatment-aware neural reranking approach, FAT, achieves state-of-the-art effectiveness for TREC Precision Medicine 2020. Our analysis indicates that the BERT-based rerankers automatically learn to score documents through identifying concepts relevant to precision medicine, similar to hand-crafted heuristics successful in the earlier studies.