关于核函数的可分性

Tao Wu, Hangen He, D. Hu
{"title":"关于核函数的可分性","authors":"Tao Wu, Hangen He, D. Hu","doi":"10.1109/ICONIP.2002.1198220","DOIUrl":null,"url":null,"abstract":"How to select a kernel function for the given data is an open problem in the research of support vector machine (SVM). There is a question puzzling many people: suppose the training data are separated nonlinearly in the input space, how do we know that the chosen kernel function can make the training data to be separated linearly in the feature space? A simple method is presented to decide if a selected kernel function can separate the given data linearly or not in the feature space.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the separability of kernel functions\",\"authors\":\"Tao Wu, Hangen He, D. Hu\",\"doi\":\"10.1109/ICONIP.2002.1198220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to select a kernel function for the given data is an open problem in the research of support vector machine (SVM). There is a question puzzling many people: suppose the training data are separated nonlinearly in the input space, how do we know that the chosen kernel function can make the training data to be separated linearly in the feature space? A simple method is presented to decide if a selected kernel function can separate the given data linearly or not in the feature space.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1198220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如何为给定的数据选择核函数是支持向量机研究中的一个开放性问题。有一个问题困扰着很多人:假设训练数据在输入空间中是非线性分离的,我们如何知道所选择的核函数可以使训练数据在特征空间中线性分离?提出了一种简单的方法来判断所选核函数是否能在特征空间中线性分离给定的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the separability of kernel functions
How to select a kernel function for the given data is an open problem in the research of support vector machine (SVM). There is a question puzzling many people: suppose the training data are separated nonlinearly in the input space, how do we know that the chosen kernel function can make the training data to be separated linearly in the feature space? A simple method is presented to decide if a selected kernel function can separate the given data linearly or not in the feature space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信