{"title":"输出超过200kv的炸药驱动铁电脉冲发生器的设计","authors":"S. Holt, J. Dickens, J. Walter, S. Calico","doi":"10.1109/PPC.2005.300685","DOIUrl":null,"url":null,"abstract":"The design and testing of explosive-driven ferroelectric generators (FEGs) with output voltages exceeding 200 kV is presented. The generator design is aimed at achieving high voltages in a compact device by explosively compressing stacks of ferroelectric ceramic discs. The ferroelectric used in this application is EC -64 lead zirconate- titanate (PZT), a hard ferroelectric ceramic with a high dielectric constant and a good piezoelectric coupling coefficient in the direction of polarization. The pressure impulse is generated by high explosive detonating cord and travels longitudinally along the polarization vector in the PZT. The effect of variations in the rise-time, width, and magnitude of the pressure pulse on the peak voltage has been experimentally studied by modifying the ferroelectric stack and explosive driver geometries. Different dielectric insulations are experimentally evaluated for good compatibility with the ferroelectrics and maximum hold-off voltage.","PeriodicalId":200159,"journal":{"name":"2005 IEEE Pulsed Power Conference","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design of Explosive-Driven Ferroelectric Pulse Generators with Outputs Exceeding 200 kV\",\"authors\":\"S. Holt, J. Dickens, J. Walter, S. Calico\",\"doi\":\"10.1109/PPC.2005.300685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and testing of explosive-driven ferroelectric generators (FEGs) with output voltages exceeding 200 kV is presented. The generator design is aimed at achieving high voltages in a compact device by explosively compressing stacks of ferroelectric ceramic discs. The ferroelectric used in this application is EC -64 lead zirconate- titanate (PZT), a hard ferroelectric ceramic with a high dielectric constant and a good piezoelectric coupling coefficient in the direction of polarization. The pressure impulse is generated by high explosive detonating cord and travels longitudinally along the polarization vector in the PZT. The effect of variations in the rise-time, width, and magnitude of the pressure pulse on the peak voltage has been experimentally studied by modifying the ferroelectric stack and explosive driver geometries. Different dielectric insulations are experimentally evaluated for good compatibility with the ferroelectrics and maximum hold-off voltage.\",\"PeriodicalId\":200159,\"journal\":{\"name\":\"2005 IEEE Pulsed Power Conference\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Pulsed Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.2005.300685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2005.300685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Explosive-Driven Ferroelectric Pulse Generators with Outputs Exceeding 200 kV
The design and testing of explosive-driven ferroelectric generators (FEGs) with output voltages exceeding 200 kV is presented. The generator design is aimed at achieving high voltages in a compact device by explosively compressing stacks of ferroelectric ceramic discs. The ferroelectric used in this application is EC -64 lead zirconate- titanate (PZT), a hard ferroelectric ceramic with a high dielectric constant and a good piezoelectric coupling coefficient in the direction of polarization. The pressure impulse is generated by high explosive detonating cord and travels longitudinally along the polarization vector in the PZT. The effect of variations in the rise-time, width, and magnitude of the pressure pulse on the peak voltage has been experimentally studied by modifying the ferroelectric stack and explosive driver geometries. Different dielectric insulations are experimentally evaluated for good compatibility with the ferroelectrics and maximum hold-off voltage.