Steven N. Rodriguez, A. Iliopoulos, J. Michopoulos, J. Jaworski
{"title":"动叶气动弹性与叶尖涡稳定性耦合效应研究","authors":"Steven N. Rodriguez, A. Iliopoulos, J. Michopoulos, J. Jaworski","doi":"10.1115/detc2020-22632","DOIUrl":null,"url":null,"abstract":"\n The relationship between rotor-blade aeroelasticity and tip-vortex stability is investigated numerically. An aeroelastic framework based on the free-vortex wake and finite element methods is employed to model a subscaled helicopter rotor in hover and forward-tilted conditions. A linear eigenvalue stability analysis is performed on tip vortices to associate the coupled impact of aeroelastic effects and vortex evolution. Prior numerical investigations have shown that highly flexible wind turbine rotor-blades have the potential to decrease levels of the instability of tip vortices. The present work focuses on testing these findings against a subscaled rotor within the range of helicopter operational rotation frequencies. The presented work aims to develop further insight into rotor-wake interactions and blade-vortex interaction to explore the mitigation of adverse rotorcraft operational conditions, such as their effect on aerodynamic-induced airframe vibrations and the associated life-cycle fatigue performance.","PeriodicalId":164403,"journal":{"name":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating the Coupled Effects Between Rotor-Blade Aeroelasticity and Tip Vortex Stability\",\"authors\":\"Steven N. Rodriguez, A. Iliopoulos, J. Michopoulos, J. Jaworski\",\"doi\":\"10.1115/detc2020-22632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The relationship between rotor-blade aeroelasticity and tip-vortex stability is investigated numerically. An aeroelastic framework based on the free-vortex wake and finite element methods is employed to model a subscaled helicopter rotor in hover and forward-tilted conditions. A linear eigenvalue stability analysis is performed on tip vortices to associate the coupled impact of aeroelastic effects and vortex evolution. Prior numerical investigations have shown that highly flexible wind turbine rotor-blades have the potential to decrease levels of the instability of tip vortices. The present work focuses on testing these findings against a subscaled rotor within the range of helicopter operational rotation frequencies. The presented work aims to develop further insight into rotor-wake interactions and blade-vortex interaction to explore the mitigation of adverse rotorcraft operational conditions, such as their effect on aerodynamic-induced airframe vibrations and the associated life-cycle fatigue performance.\",\"PeriodicalId\":164403,\"journal\":{\"name\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating the Coupled Effects Between Rotor-Blade Aeroelasticity and Tip Vortex Stability
The relationship between rotor-blade aeroelasticity and tip-vortex stability is investigated numerically. An aeroelastic framework based on the free-vortex wake and finite element methods is employed to model a subscaled helicopter rotor in hover and forward-tilted conditions. A linear eigenvalue stability analysis is performed on tip vortices to associate the coupled impact of aeroelastic effects and vortex evolution. Prior numerical investigations have shown that highly flexible wind turbine rotor-blades have the potential to decrease levels of the instability of tip vortices. The present work focuses on testing these findings against a subscaled rotor within the range of helicopter operational rotation frequencies. The presented work aims to develop further insight into rotor-wake interactions and blade-vortex interaction to explore the mitigation of adverse rotorcraft operational conditions, such as their effect on aerodynamic-induced airframe vibrations and the associated life-cycle fatigue performance.