深度信念网络对大词汇量连续语音识别的有效性研究

Tara N. Sainath, Brian Kingsbury, B. Ramabhadran, P. Fousek, Petr Novák, Abdel-rahman Mohamed
{"title":"深度信念网络对大词汇量连续语音识别的有效性研究","authors":"Tara N. Sainath, Brian Kingsbury, B. Ramabhadran, P. Fousek, Petr Novák, Abdel-rahman Mohamed","doi":"10.1109/ASRU.2011.6163900","DOIUrl":null,"url":null,"abstract":"To date, there has been limited work in applying Deep Belief Networks (DBNs) for acoustic modeling in LVCSR tasks, with past work using standard speech features. However, a typical LVCSR system makes use of both feature and model-space speaker adaptation and discriminative training. This paper explores the performance of DBNs in a state-of-the-art LVCSR system, showing improvements over Multi-Layer Perceptrons (MLPs) and GMM/HMMs across a variety of features on an English Broadcast News task. In addition, we provide a recipe for data parallelization of DBN training, showing that data parallelization can provide linear speed-up in the number of machines, without impacting WER.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"198","resultStr":"{\"title\":\"Making Deep Belief Networks effective for large vocabulary continuous speech recognition\",\"authors\":\"Tara N. Sainath, Brian Kingsbury, B. Ramabhadran, P. Fousek, Petr Novák, Abdel-rahman Mohamed\",\"doi\":\"10.1109/ASRU.2011.6163900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To date, there has been limited work in applying Deep Belief Networks (DBNs) for acoustic modeling in LVCSR tasks, with past work using standard speech features. However, a typical LVCSR system makes use of both feature and model-space speaker adaptation and discriminative training. This paper explores the performance of DBNs in a state-of-the-art LVCSR system, showing improvements over Multi-Layer Perceptrons (MLPs) and GMM/HMMs across a variety of features on an English Broadcast News task. In addition, we provide a recipe for data parallelization of DBN training, showing that data parallelization can provide linear speed-up in the number of machines, without impacting WER.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"198\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 198

摘要

迄今为止,在LVCSR任务中应用深度信念网络(dbn)进行声学建模方面的工作有限,过去的工作使用标准语音特征。典型的LVCSR系统采用了特征空间和模型空间两种方式——说话人自适应和判别训练。本文探讨了dbn在最先进的LVCSR系统中的性能,展示了多层感知器(mlp)和GMM/ hmm在英语广播新闻任务的各种特征上的改进。此外,我们还提供了DBN训练数据并行化的配方,表明数据并行化可以在不影响WER的情况下提供机器数量的线性加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Making Deep Belief Networks effective for large vocabulary continuous speech recognition
To date, there has been limited work in applying Deep Belief Networks (DBNs) for acoustic modeling in LVCSR tasks, with past work using standard speech features. However, a typical LVCSR system makes use of both feature and model-space speaker adaptation and discriminative training. This paper explores the performance of DBNs in a state-of-the-art LVCSR system, showing improvements over Multi-Layer Perceptrons (MLPs) and GMM/HMMs across a variety of features on an English Broadcast News task. In addition, we provide a recipe for data parallelization of DBN training, showing that data parallelization can provide linear speed-up in the number of machines, without impacting WER.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信