关于随机Pólya树的缩放限制的注释

Bernhard Gittenberger, E. Y. Jin, M. Wallner
{"title":"关于随机Pólya树的缩放限制的注释","authors":"Bernhard Gittenberger, E. Y. Jin, M. Wallner","doi":"10.1137/1.9781611974775.8","DOIUrl":null,"url":null,"abstract":"Panagiotou and Stufler (arXiv:1502.07180v2) recently proved one important fact on their way to establish the scaling limits of random P\\'{o}lya trees: a uniform random P\\'{o}lya tree of size $n$ consists of a conditioned critical Galton-Watson tree $C_n$ and many small forests, where with probability tending to one as $n$ tends to infinity, any forest $F_n(v)$, that is attached to a node $v$ in $C_n$, is maximally of size $\\vert F_n(v)\\vert=O(\\log n)$. Their proof used the framework of a Boltzmann sampler and deviation inequalities. \nIn this paper, first, we employ a unified framework in analytic combinatorics to prove this fact with additional improvements on the bound of $\\vert F_n(v)\\vert$, namely $\\vert F_n(v)\\vert=\\Theta(\\log n)$. Second, we give a combinatorial interpretation of the rational weights of these forests and the defining substitution process in terms of automorphisms associated to a given P\\'{o}lya tree. Finally, we derive the limit probability that for a random node $v$ the attached forest $F_n(v)$ is of a given size.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A note on the scaling limits of random Pólya trees\",\"authors\":\"Bernhard Gittenberger, E. Y. Jin, M. Wallner\",\"doi\":\"10.1137/1.9781611974775.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Panagiotou and Stufler (arXiv:1502.07180v2) recently proved one important fact on their way to establish the scaling limits of random P\\\\'{o}lya trees: a uniform random P\\\\'{o}lya tree of size $n$ consists of a conditioned critical Galton-Watson tree $C_n$ and many small forests, where with probability tending to one as $n$ tends to infinity, any forest $F_n(v)$, that is attached to a node $v$ in $C_n$, is maximally of size $\\\\vert F_n(v)\\\\vert=O(\\\\log n)$. Their proof used the framework of a Boltzmann sampler and deviation inequalities. \\nIn this paper, first, we employ a unified framework in analytic combinatorics to prove this fact with additional improvements on the bound of $\\\\vert F_n(v)\\\\vert$, namely $\\\\vert F_n(v)\\\\vert=\\\\Theta(\\\\log n)$. Second, we give a combinatorial interpretation of the rational weights of these forests and the defining substitution process in terms of automorphisms associated to a given P\\\\'{o}lya tree. Finally, we derive the limit probability that for a random node $v$ the attached forest $F_n(v)$ is of a given size.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974775.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974775.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Panagiotou和Stufler (arXiv:1502.07180v2)最近在建立随机Pólya树的缩放极限的过程中证明了一个重要的事实:一个大小为$n$的均匀随机Pólya树由一个条件临界高尔顿-沃森树$C_n$和许多小森林组成,其中,随着$n$趋于无穷大的概率趋于1,任何森林$F_n(v)$,附着在$C_n$中的节点$v$上,其最大大小为$\vert F_n(v)\vert=O(\log n)$。他们的证明使用了玻尔兹曼采样器和偏差不等式的框架。在本文中,我们首先利用解析组合学中的一个统一框架来证明这一事实,并对$\vert F_n(v)\vert$的界即$\vert F_n(v)\vert=\Theta(\log n)$作了进一步改进。其次,我们给出了这些森林的合理权重的组合解释,并根据与给定Pólya树相关的自同构定义替换过程。最后,我们推导出对于一个随机节点$v$,附加森林$F_n(v)$具有给定大小的极限概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the scaling limits of random Pólya trees
Panagiotou and Stufler (arXiv:1502.07180v2) recently proved one important fact on their way to establish the scaling limits of random P\'{o}lya trees: a uniform random P\'{o}lya tree of size $n$ consists of a conditioned critical Galton-Watson tree $C_n$ and many small forests, where with probability tending to one as $n$ tends to infinity, any forest $F_n(v)$, that is attached to a node $v$ in $C_n$, is maximally of size $\vert F_n(v)\vert=O(\log n)$. Their proof used the framework of a Boltzmann sampler and deviation inequalities. In this paper, first, we employ a unified framework in analytic combinatorics to prove this fact with additional improvements on the bound of $\vert F_n(v)\vert$, namely $\vert F_n(v)\vert=\Theta(\log n)$. Second, we give a combinatorial interpretation of the rational weights of these forests and the defining substitution process in terms of automorphisms associated to a given P\'{o}lya tree. Finally, we derive the limit probability that for a random node $v$ the attached forest $F_n(v)$ is of a given size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信