{"title":"基于会话级网络流量特征的Android恶意软件检测与分类","authors":"Mohammad Abuthawabeh, Khaled W. Mahmoud","doi":"10.1109/ACIT47987.2019.8991114","DOIUrl":null,"url":null,"abstract":"The number of malware in Android environment is increasing. As a result, the conventional detection algorithms that employ signature detection methods are facing challenges to cope with the huge number of attacks. In this respect, a supervised-based model that can enhance the accuracy and the depth of the malware detection and categorization process using a conversation-level feature is presented. The ensemble learning technique was employed in order to select the most useful features. A comparison between the methods provided in this research and the results of other studies that used the same dataset is given. The results show that Extra-trees classifier had achieved the highest weighted accuracy percentage among the other classifiers by 87.75% for malware detection and 79.97% for malware categorization. Finally, this study has achieved significant enhancement in malware categorization rate by 30.2% for precision and 31.14% recall in comparison with other studies that used the same dataset.","PeriodicalId":314091,"journal":{"name":"2019 International Arab Conference on Information Technology (ACIT)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Android Malware Detection and Categorization Based on Conversation-level Network Traffic Features\",\"authors\":\"Mohammad Abuthawabeh, Khaled W. Mahmoud\",\"doi\":\"10.1109/ACIT47987.2019.8991114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of malware in Android environment is increasing. As a result, the conventional detection algorithms that employ signature detection methods are facing challenges to cope with the huge number of attacks. In this respect, a supervised-based model that can enhance the accuracy and the depth of the malware detection and categorization process using a conversation-level feature is presented. The ensemble learning technique was employed in order to select the most useful features. A comparison between the methods provided in this research and the results of other studies that used the same dataset is given. The results show that Extra-trees classifier had achieved the highest weighted accuracy percentage among the other classifiers by 87.75% for malware detection and 79.97% for malware categorization. Finally, this study has achieved significant enhancement in malware categorization rate by 30.2% for precision and 31.14% recall in comparison with other studies that used the same dataset.\",\"PeriodicalId\":314091,\"journal\":{\"name\":\"2019 International Arab Conference on Information Technology (ACIT)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT47987.2019.8991114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT47987.2019.8991114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Android Malware Detection and Categorization Based on Conversation-level Network Traffic Features
The number of malware in Android environment is increasing. As a result, the conventional detection algorithms that employ signature detection methods are facing challenges to cope with the huge number of attacks. In this respect, a supervised-based model that can enhance the accuracy and the depth of the malware detection and categorization process using a conversation-level feature is presented. The ensemble learning technique was employed in order to select the most useful features. A comparison between the methods provided in this research and the results of other studies that used the same dataset is given. The results show that Extra-trees classifier had achieved the highest weighted accuracy percentage among the other classifiers by 87.75% for malware detection and 79.97% for malware categorization. Finally, this study has achieved significant enhancement in malware categorization rate by 30.2% for precision and 31.14% recall in comparison with other studies that used the same dataset.