Giulia Sellitto, Emanuele Iannone, Zadia Codabux, Valentina Lenarduzzi, A. D. Lucia, Fabio Palomba, F. Ferrucci
{"title":"理解重构对程序理解的影响","authors":"Giulia Sellitto, Emanuele Iannone, Zadia Codabux, Valentina Lenarduzzi, A. D. Lucia, Fabio Palomba, F. Ferrucci","doi":"10.1109/saner53432.2022.00090","DOIUrl":null,"url":null,"abstract":"Software refactoring is the activity associated with developers changing the internal structure of source code without modifying its external behavior. The literature argues that refactoring might have beneficial and harmful implications for software maintainability, primarily when performed without the support of automated tools. This paper continues the narrative on the effects of refactoring by exploring the dimension of program comprehension, namely the property that describes how easy it is for developers to understand source code. We start our investigation by assessing the basic unit of program comprehension, namely program readability. Next, we set up a large-scale empirical investigation – conducted on 156 open-source projects – to quantify the impact of refactoring on program readability. First, we mine refactoring data and, for each commit involving a refactoring, we compute (i) the amount and type(s) of refactoring actions performed and (ii) eight state-of-the-art program comprehension metrics. Afterwards, we build statistical models relating the various refactoring operations to each of the readability metrics considered to quantify the extent to which each refactoring impacts the metrics in either a positive or negative manner. The key results are that refactoring has a notable impact on most of the readability metrics considered.","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Toward Understanding the Impact of Refactoring on Program Comprehension\",\"authors\":\"Giulia Sellitto, Emanuele Iannone, Zadia Codabux, Valentina Lenarduzzi, A. D. Lucia, Fabio Palomba, F. Ferrucci\",\"doi\":\"10.1109/saner53432.2022.00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software refactoring is the activity associated with developers changing the internal structure of source code without modifying its external behavior. The literature argues that refactoring might have beneficial and harmful implications for software maintainability, primarily when performed without the support of automated tools. This paper continues the narrative on the effects of refactoring by exploring the dimension of program comprehension, namely the property that describes how easy it is for developers to understand source code. We start our investigation by assessing the basic unit of program comprehension, namely program readability. Next, we set up a large-scale empirical investigation – conducted on 156 open-source projects – to quantify the impact of refactoring on program readability. First, we mine refactoring data and, for each commit involving a refactoring, we compute (i) the amount and type(s) of refactoring actions performed and (ii) eight state-of-the-art program comprehension metrics. Afterwards, we build statistical models relating the various refactoring operations to each of the readability metrics considered to quantify the extent to which each refactoring impacts the metrics in either a positive or negative manner. The key results are that refactoring has a notable impact on most of the readability metrics considered.\",\"PeriodicalId\":437520,\"journal\":{\"name\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/saner53432.2022.00090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward Understanding the Impact of Refactoring on Program Comprehension
Software refactoring is the activity associated with developers changing the internal structure of source code without modifying its external behavior. The literature argues that refactoring might have beneficial and harmful implications for software maintainability, primarily when performed without the support of automated tools. This paper continues the narrative on the effects of refactoring by exploring the dimension of program comprehension, namely the property that describes how easy it is for developers to understand source code. We start our investigation by assessing the basic unit of program comprehension, namely program readability. Next, we set up a large-scale empirical investigation – conducted on 156 open-source projects – to quantify the impact of refactoring on program readability. First, we mine refactoring data and, for each commit involving a refactoring, we compute (i) the amount and type(s) of refactoring actions performed and (ii) eight state-of-the-art program comprehension metrics. Afterwards, we build statistical models relating the various refactoring operations to each of the readability metrics considered to quantify the extent to which each refactoring impacts the metrics in either a positive or negative manner. The key results are that refactoring has a notable impact on most of the readability metrics considered.