用惩罚最优尺度表示多转移矩阵的趋势向量

K. Adachi
{"title":"用惩罚最优尺度表示多转移矩阵的趋势向量","authors":"K. Adachi","doi":"10.5183/JJSCS1988.20.19","DOIUrl":null,"url":null,"abstract":"Individuals' choices of categories observed on two occasions are described by transition frequency matrices. In this paper, a penalized optimal scaling method is presented to analyze a set of the matrices obtained from multiple sources and graphically represent a transition trend for each source as a vector. This method finds scores of individuals, those of categories, and vectors of trends, in such a way that individuals' scores become homogeneous to the scores of chosen categories and trend vectors become homogeneous to the inter-occasion changes in individuals' scores. The resulting lowdimensional configuration of trend vectors allows us easily to grasp transition trends. Further, the projection of category scores onto trend vectors gives the unidimensional scales of categories useful for scrutinizing transition trends.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TREND VECTOR REPRESENTATION OF MULTIPLE TRANSITION MATRICES BY PENALIZED OPTIMAL SCALING\",\"authors\":\"K. Adachi\",\"doi\":\"10.5183/JJSCS1988.20.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Individuals' choices of categories observed on two occasions are described by transition frequency matrices. In this paper, a penalized optimal scaling method is presented to analyze a set of the matrices obtained from multiple sources and graphically represent a transition trend for each source as a vector. This method finds scores of individuals, those of categories, and vectors of trends, in such a way that individuals' scores become homogeneous to the scores of chosen categories and trend vectors become homogeneous to the inter-occasion changes in individuals' scores. The resulting lowdimensional configuration of trend vectors allows us easily to grasp transition trends. Further, the projection of category scores onto trend vectors gives the unidimensional scales of categories useful for scrutinizing transition trends.\",\"PeriodicalId\":338719,\"journal\":{\"name\":\"Journal of the Japanese Society of Computational Statistics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japanese Society of Computational Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5183/JJSCS1988.20.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS1988.20.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在两种情况下观察到的个体对类别的选择用转移频率矩阵来描述。本文提出了一种惩罚最优标度方法来分析从多个源获得的一组矩阵,并将每个源的过渡趋势图形化地表示为向量。这种方法找到个体的分数、类别的分数和趋势向量,使个体的分数与所选类别的分数趋于一致,趋势向量与个体分数在不同场合的变化趋于一致。由此产生的趋势向量的低维配置使我们能够轻松地掌握过渡趋势。此外,将类别得分投射到趋势向量上,给出了对审查过渡趋势有用的类别的一维尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TREND VECTOR REPRESENTATION OF MULTIPLE TRANSITION MATRICES BY PENALIZED OPTIMAL SCALING
Individuals' choices of categories observed on two occasions are described by transition frequency matrices. In this paper, a penalized optimal scaling method is presented to analyze a set of the matrices obtained from multiple sources and graphically represent a transition trend for each source as a vector. This method finds scores of individuals, those of categories, and vectors of trends, in such a way that individuals' scores become homogeneous to the scores of chosen categories and trend vectors become homogeneous to the inter-occasion changes in individuals' scores. The resulting lowdimensional configuration of trend vectors allows us easily to grasp transition trends. Further, the projection of category scores onto trend vectors gives the unidimensional scales of categories useful for scrutinizing transition trends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信