从失败中学习解决复杂问题的专业知识

Cristina Boicu, G. Tecuci, Mihai Boicu
{"title":"从失败中学习解决复杂问题的专业知识","authors":"Cristina Boicu, G. Tecuci, Mihai Boicu","doi":"10.1109/ICMLA.2007.42","DOIUrl":null,"url":null,"abstract":"Our research addresses the issue of developing knowledge-based agents that capture and use the problem solving knowledge of subject matter experts from diverse application domains. This paper emphasizes the use of negative examples in agent learning by presenting several strategies for capturing expert's knowledge when the agent fails to correctly solve a problem. These strategies have been implemented into the disciple learning agent shell and used in complex application domains such as intelligence analysis, center of gravity determination, and emergency response planning.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning complex problem solving expertise from failures\",\"authors\":\"Cristina Boicu, G. Tecuci, Mihai Boicu\",\"doi\":\"10.1109/ICMLA.2007.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our research addresses the issue of developing knowledge-based agents that capture and use the problem solving knowledge of subject matter experts from diverse application domains. This paper emphasizes the use of negative examples in agent learning by presenting several strategies for capturing expert's knowledge when the agent fails to correctly solve a problem. These strategies have been implemented into the disciple learning agent shell and used in complex application domains such as intelligence analysis, center of gravity determination, and emergency response planning.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们的研究解决了开发基于知识的代理的问题,这些代理可以捕获和使用来自不同应用领域的主题专家的问题解决知识。本文强调了在智能体学习中使用负例,提出了几种策略,当智能体不能正确解决问题时,可以捕获专家的知识。这些策略已被实现到门徒学习代理外壳中,并用于复杂的应用领域,如情报分析、重心确定和应急响应计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning complex problem solving expertise from failures
Our research addresses the issue of developing knowledge-based agents that capture and use the problem solving knowledge of subject matter experts from diverse application domains. This paper emphasizes the use of negative examples in agent learning by presenting several strategies for capturing expert's knowledge when the agent fails to correctly solve a problem. These strategies have been implemented into the disciple learning agent shell and used in complex application domains such as intelligence analysis, center of gravity determination, and emergency response planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信