监控视频中人体运动的频域分析

Hsuan T. Chang, Chang-Sian Chen, Chun-Wen Hung, D. Shen
{"title":"监控视频中人体运动的频域分析","authors":"Hsuan T. Chang, Chang-Sian Chen, Chun-Wen Hung, D. Shen","doi":"10.1109/BWCCA.2010.125","DOIUrl":null,"url":null,"abstract":"A method to distinguish different human motions including walking, running, and wandering in the surveillance video is proposed in this paper. First of all, a block-based background extraction method is used to construct the background image. Second, the moving object can be detected by the use of RGB-based motion detection method and then the shadow removal scheme. Finally, a temporal signal representing the dynamic area of minimal rectangular regions covering the moving object is determined and then serves as a feature. By applying the discrete Fourier transform on the temporal signal, the various human motion statuses can be efficiently recognized according to the maximal magnitudes and the corresponding frequencies. The experimental results show that the accuracy achieves 90% accuracy in average for all the test video sequences.","PeriodicalId":196401,"journal":{"name":"2010 International Conference on Broadband, Wireless Computing, Communication and Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequency Domain Analysis of Human Motions in Surveillance Video\",\"authors\":\"Hsuan T. Chang, Chang-Sian Chen, Chun-Wen Hung, D. Shen\",\"doi\":\"10.1109/BWCCA.2010.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to distinguish different human motions including walking, running, and wandering in the surveillance video is proposed in this paper. First of all, a block-based background extraction method is used to construct the background image. Second, the moving object can be detected by the use of RGB-based motion detection method and then the shadow removal scheme. Finally, a temporal signal representing the dynamic area of minimal rectangular regions covering the moving object is determined and then serves as a feature. By applying the discrete Fourier transform on the temporal signal, the various human motion statuses can be efficiently recognized according to the maximal magnitudes and the corresponding frequencies. The experimental results show that the accuracy achieves 90% accuracy in average for all the test video sequences.\",\"PeriodicalId\":196401,\"journal\":{\"name\":\"2010 International Conference on Broadband, Wireless Computing, Communication and Applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Broadband, Wireless Computing, Communication and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BWCCA.2010.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Broadband, Wireless Computing, Communication and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2010.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种识别监控视频中行走、奔跑和徘徊等不同人体运动的方法。首先,采用基于分块的背景提取方法构造背景图像。其次,先采用基于rgb的运动检测方法,再采用阴影去除方案对运动目标进行检测。最后,确定一个时间信号,表示覆盖运动目标的最小矩形区域的动态区域,然后作为特征。通过对时域信号进行离散傅里叶变换,根据最大幅值和相应频率有效地识别人体的各种运动状态。实验结果表明,该方法对所有测试视频序列的准确率平均达到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Domain Analysis of Human Motions in Surveillance Video
A method to distinguish different human motions including walking, running, and wandering in the surveillance video is proposed in this paper. First of all, a block-based background extraction method is used to construct the background image. Second, the moving object can be detected by the use of RGB-based motion detection method and then the shadow removal scheme. Finally, a temporal signal representing the dynamic area of minimal rectangular regions covering the moving object is determined and then serves as a feature. By applying the discrete Fourier transform on the temporal signal, the various human motion statuses can be efficiently recognized according to the maximal magnitudes and the corresponding frequencies. The experimental results show that the accuracy achieves 90% accuracy in average for all the test video sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信