走向实用的工厂活动识别:对工厂中重复性装配工作的无监督理解

T. Maekawa, Daisuke Nakai, Kazuya Ohara, Y. Namioka
{"title":"走向实用的工厂活动识别:对工厂中重复性装配工作的无监督理解","authors":"T. Maekawa, Daisuke Nakai, Kazuya Ohara, Y. Namioka","doi":"10.1145/2971648.2971721","DOIUrl":null,"url":null,"abstract":"In a line production system of a factory, a worker repetitively performs predefined operation processes. This paper tries to recognize work by factory workers in an unsupervised manner. Specifically, we propose an unsupervised measurement method for estimating lead time (duration) of each period of an operation process using a wrist-worn accelerometer because the lead time greatly affects productivity of the line production system. Our proposed method automatically finds a frequent sensor data segment as a \"motif\" that occurs once in each operation period using only prior knowledge about predefined standard lead time of the operation process, and uses the occurrence intervals of the motif to estimate the lead time. We evaluated our method using real factory data and the estimation error was only about 3.5%.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Toward practical factory activity recognition: unsupervised understanding of repetitive assembly work in a factory\",\"authors\":\"T. Maekawa, Daisuke Nakai, Kazuya Ohara, Y. Namioka\",\"doi\":\"10.1145/2971648.2971721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a line production system of a factory, a worker repetitively performs predefined operation processes. This paper tries to recognize work by factory workers in an unsupervised manner. Specifically, we propose an unsupervised measurement method for estimating lead time (duration) of each period of an operation process using a wrist-worn accelerometer because the lead time greatly affects productivity of the line production system. Our proposed method automatically finds a frequent sensor data segment as a \\\"motif\\\" that occurs once in each operation period using only prior knowledge about predefined standard lead time of the operation process, and uses the occurrence intervals of the motif to estimate the lead time. We evaluated our method using real factory data and the estimation error was only about 3.5%.\",\"PeriodicalId\":303792,\"journal\":{\"name\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2971648.2971721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

在工厂的流水线生产系统中,工人重复地执行预定的操作流程。本文试图承认工厂工人在无人监督的情况下的工作。具体来说,我们提出了一种无监督的测量方法,使用腕带加速度计来估计操作过程中每个阶段的交货时间(持续时间),因为交货时间极大地影响了生产线生产系统的生产率。我们提出的方法仅使用预先定义的操作过程标准提前期的先验知识,自动找到在每个操作周期中出现一次的频繁传感器数据段作为“motif”,并使用motif的出现间隔来估计提前期。我们使用真实工厂数据对我们的方法进行了评估,估计误差仅为3.5%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward practical factory activity recognition: unsupervised understanding of repetitive assembly work in a factory
In a line production system of a factory, a worker repetitively performs predefined operation processes. This paper tries to recognize work by factory workers in an unsupervised manner. Specifically, we propose an unsupervised measurement method for estimating lead time (duration) of each period of an operation process using a wrist-worn accelerometer because the lead time greatly affects productivity of the line production system. Our proposed method automatically finds a frequent sensor data segment as a "motif" that occurs once in each operation period using only prior knowledge about predefined standard lead time of the operation process, and uses the occurrence intervals of the motif to estimate the lead time. We evaluated our method using real factory data and the estimation error was only about 3.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信