一种求解组合优化问题的量子进化算法

Parvaz Mahdabi, M. Abadi, S. Jalili
{"title":"一种求解组合优化问题的量子进化算法","authors":"Parvaz Mahdabi, M. Abadi, S. Jalili","doi":"10.1145/1569901.1570172","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel quantum-inspired evolutionary algorithm, called NQEA, for solving combinatorial optimization problems. NQEA uses a new Q-bit update operator to increase the balance between the exploration and exploitation of the search space. In the operator, first, the Q-bits of each individual in the population are updated based on the personal best measurement of that individual and the best measurement of current generation. Then, a restriction is applied to each Q-bit to prevent the premature convergence of its values. The results of experiments on the 0-1 knapsack and NK-landscapes problems show that NQEA performs better than a classical genetic algorithm, CGA, and two quantum-inspired evolutionary algorithms, QEA and vQEA, in terms of convergence speed and accuracy.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A novel quantum-inspired evolutionary algorithm for solving combinatorial optimization problems\",\"authors\":\"Parvaz Mahdabi, M. Abadi, S. Jalili\",\"doi\":\"10.1145/1569901.1570172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel quantum-inspired evolutionary algorithm, called NQEA, for solving combinatorial optimization problems. NQEA uses a new Q-bit update operator to increase the balance between the exploration and exploitation of the search space. In the operator, first, the Q-bits of each individual in the population are updated based on the personal best measurement of that individual and the best measurement of current generation. Then, a restriction is applied to each Q-bit to prevent the premature convergence of its values. The results of experiments on the 0-1 knapsack and NK-landscapes problems show that NQEA performs better than a classical genetic algorithm, CGA, and two quantum-inspired evolutionary algorithms, QEA and vQEA, in terms of convergence speed and accuracy.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种新的量子启发的进化算法,称为NQEA,用于解决组合优化问题。NQEA使用一个新的q位更新算子来增加搜索空间的探索和利用之间的平衡。在算子中,首先,基于该个体的个人最佳度量和当前代的最佳度量来更新种群中每个个体的q位。然后,对每个q位进行限制,防止其值过早收敛。在0-1背包和nk -景观问题上的实验结果表明,NQEA在收敛速度和精度上都优于经典遗传算法CGA和两种量子进化算法QEA和vQEA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel quantum-inspired evolutionary algorithm for solving combinatorial optimization problems
In this paper, we propose a novel quantum-inspired evolutionary algorithm, called NQEA, for solving combinatorial optimization problems. NQEA uses a new Q-bit update operator to increase the balance between the exploration and exploitation of the search space. In the operator, first, the Q-bits of each individual in the population are updated based on the personal best measurement of that individual and the best measurement of current generation. Then, a restriction is applied to each Q-bit to prevent the premature convergence of its values. The results of experiments on the 0-1 knapsack and NK-landscapes problems show that NQEA performs better than a classical genetic algorithm, CGA, and two quantum-inspired evolutionary algorithms, QEA and vQEA, in terms of convergence speed and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信