{"title":"一种求解组合优化问题的量子进化算法","authors":"Parvaz Mahdabi, M. Abadi, S. Jalili","doi":"10.1145/1569901.1570172","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel quantum-inspired evolutionary algorithm, called NQEA, for solving combinatorial optimization problems. NQEA uses a new Q-bit update operator to increase the balance between the exploration and exploitation of the search space. In the operator, first, the Q-bits of each individual in the population are updated based on the personal best measurement of that individual and the best measurement of current generation. Then, a restriction is applied to each Q-bit to prevent the premature convergence of its values. The results of experiments on the 0-1 knapsack and NK-landscapes problems show that NQEA performs better than a classical genetic algorithm, CGA, and two quantum-inspired evolutionary algorithms, QEA and vQEA, in terms of convergence speed and accuracy.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A novel quantum-inspired evolutionary algorithm for solving combinatorial optimization problems\",\"authors\":\"Parvaz Mahdabi, M. Abadi, S. Jalili\",\"doi\":\"10.1145/1569901.1570172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel quantum-inspired evolutionary algorithm, called NQEA, for solving combinatorial optimization problems. NQEA uses a new Q-bit update operator to increase the balance between the exploration and exploitation of the search space. In the operator, first, the Q-bits of each individual in the population are updated based on the personal best measurement of that individual and the best measurement of current generation. Then, a restriction is applied to each Q-bit to prevent the premature convergence of its values. The results of experiments on the 0-1 knapsack and NK-landscapes problems show that NQEA performs better than a classical genetic algorithm, CGA, and two quantum-inspired evolutionary algorithms, QEA and vQEA, in terms of convergence speed and accuracy.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel quantum-inspired evolutionary algorithm for solving combinatorial optimization problems
In this paper, we propose a novel quantum-inspired evolutionary algorithm, called NQEA, for solving combinatorial optimization problems. NQEA uses a new Q-bit update operator to increase the balance between the exploration and exploitation of the search space. In the operator, first, the Q-bits of each individual in the population are updated based on the personal best measurement of that individual and the best measurement of current generation. Then, a restriction is applied to each Q-bit to prevent the premature convergence of its values. The results of experiments on the 0-1 knapsack and NK-landscapes problems show that NQEA performs better than a classical genetic algorithm, CGA, and two quantum-inspired evolutionary algorithms, QEA and vQEA, in terms of convergence speed and accuracy.