{"title":"基于自定义神经网络的混合数据模型精确诊断Covid-19和肺炎","authors":"S. Gore, Neelam D Gaikwad","doi":"10.1109/ICETEMS56252.2022.10093240","DOIUrl":null,"url":null,"abstract":"Classifying Covid-19 and Pneumonia is one of the most important and challenging tasks in the field of the medical sector since manual classification with human assistance can lead to incorrect prediction and diagnosis. Additionally, it is a difficult operation when there is a lot of data that need to be analyzed thoroughly. Due to the similarity in symptoms as well as in chest X-ray images of Covid-19 and Pneumonia diseases, it is difficult to distinguish those. The study presents a technological solution to build a mixed-data model using customized neural networks to discriminate between Covid-19 and Pneumonia. The proposed method is applied to the chest X-ray images and symptoms of patients of Covid-19 and Pneumonia. This helps to perform immediate prediction of Covid-19 and Pneumonia providing fast and specialized treatment to the patients appropriately. This prediction also helps the radiologist or doctors in making quick decisions. In this work, imaging data (such as Chest X-ray images) and text data (such as disease symptoms like cough, body pain, short breathing, fever, etc.) are taken for detecting Covid-19, Pneumonia and Normal patients. Data Synthesis is carried out due to the unavailability of mixed data and it has created dataset of 450 entries of Covid-19, Normal and Pneumonia cases. The goal is to design a system that accurately classifies Covid19, Pneumonia, and Normal patients by utilizing convolutional neural networks (CNN) and multi-layer perceptron (MLP) algorithms. An accuracy of 93.33% is obtained for the mixed-data model using a deep neural network, that is designed by combining custom CNN and MLP architectures.","PeriodicalId":170905,"journal":{"name":"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision Diagnosis to Discriminate Covid-19 and Pneumonia using Mixed-data Model based on Custom Neural Networks\",\"authors\":\"S. Gore, Neelam D Gaikwad\",\"doi\":\"10.1109/ICETEMS56252.2022.10093240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying Covid-19 and Pneumonia is one of the most important and challenging tasks in the field of the medical sector since manual classification with human assistance can lead to incorrect prediction and diagnosis. Additionally, it is a difficult operation when there is a lot of data that need to be analyzed thoroughly. Due to the similarity in symptoms as well as in chest X-ray images of Covid-19 and Pneumonia diseases, it is difficult to distinguish those. The study presents a technological solution to build a mixed-data model using customized neural networks to discriminate between Covid-19 and Pneumonia. The proposed method is applied to the chest X-ray images and symptoms of patients of Covid-19 and Pneumonia. This helps to perform immediate prediction of Covid-19 and Pneumonia providing fast and specialized treatment to the patients appropriately. This prediction also helps the radiologist or doctors in making quick decisions. In this work, imaging data (such as Chest X-ray images) and text data (such as disease symptoms like cough, body pain, short breathing, fever, etc.) are taken for detecting Covid-19, Pneumonia and Normal patients. Data Synthesis is carried out due to the unavailability of mixed data and it has created dataset of 450 entries of Covid-19, Normal and Pneumonia cases. The goal is to design a system that accurately classifies Covid19, Pneumonia, and Normal patients by utilizing convolutional neural networks (CNN) and multi-layer perceptron (MLP) algorithms. An accuracy of 93.33% is obtained for the mixed-data model using a deep neural network, that is designed by combining custom CNN and MLP architectures.\",\"PeriodicalId\":170905,\"journal\":{\"name\":\"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETEMS56252.2022.10093240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETEMS56252.2022.10093240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precision Diagnosis to Discriminate Covid-19 and Pneumonia using Mixed-data Model based on Custom Neural Networks
Classifying Covid-19 and Pneumonia is one of the most important and challenging tasks in the field of the medical sector since manual classification with human assistance can lead to incorrect prediction and diagnosis. Additionally, it is a difficult operation when there is a lot of data that need to be analyzed thoroughly. Due to the similarity in symptoms as well as in chest X-ray images of Covid-19 and Pneumonia diseases, it is difficult to distinguish those. The study presents a technological solution to build a mixed-data model using customized neural networks to discriminate between Covid-19 and Pneumonia. The proposed method is applied to the chest X-ray images and symptoms of patients of Covid-19 and Pneumonia. This helps to perform immediate prediction of Covid-19 and Pneumonia providing fast and specialized treatment to the patients appropriately. This prediction also helps the radiologist or doctors in making quick decisions. In this work, imaging data (such as Chest X-ray images) and text data (such as disease symptoms like cough, body pain, short breathing, fever, etc.) are taken for detecting Covid-19, Pneumonia and Normal patients. Data Synthesis is carried out due to the unavailability of mixed data and it has created dataset of 450 entries of Covid-19, Normal and Pneumonia cases. The goal is to design a system that accurately classifies Covid19, Pneumonia, and Normal patients by utilizing convolutional neural networks (CNN) and multi-layer perceptron (MLP) algorithms. An accuracy of 93.33% is obtained for the mixed-data model using a deep neural network, that is designed by combining custom CNN and MLP architectures.