人工智能正在接管世界吗?不,但这让隐私少了些

G. Ateniese
{"title":"人工智能正在接管世界吗?不,但这让隐私少了些","authors":"G. Ateniese","doi":"10.1145/3384942.3406872","DOIUrl":null,"url":null,"abstract":"This talk highlights challenges and opportunities for trustworthy AI with a focus on privacy attacks and countermeasures. AI and machine learning have no future if their privacy and security concerns are not addressed. Machine learning models could hide malicious code or back doors, and leak private information about users. We will explore inference attacks against machine learning models and frameworks (e.g., federated learning), and set out the requirements for privacy-preserving AI systems.","PeriodicalId":312816,"journal":{"name":"Proceedings of the 8th International Workshop on Security in Blockchain and Cloud Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is AI Taking Over the World? No, but It's Making it Less Private\",\"authors\":\"G. Ateniese\",\"doi\":\"10.1145/3384942.3406872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This talk highlights challenges and opportunities for trustworthy AI with a focus on privacy attacks and countermeasures. AI and machine learning have no future if their privacy and security concerns are not addressed. Machine learning models could hide malicious code or back doors, and leak private information about users. We will explore inference attacks against machine learning models and frameworks (e.g., federated learning), and set out the requirements for privacy-preserving AI systems.\",\"PeriodicalId\":312816,\"journal\":{\"name\":\"Proceedings of the 8th International Workshop on Security in Blockchain and Cloud Computing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Workshop on Security in Blockchain and Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384942.3406872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Security in Blockchain and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384942.3406872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本次演讲重点介绍了值得信赖的人工智能面临的挑战和机遇,重点介绍了隐私攻击和对策。如果不解决隐私和安全问题,人工智能和机器学习就没有未来。机器学习模型可能会隐藏恶意代码或后门,并泄露用户的私人信息。我们将探讨针对机器学习模型和框架(例如,联邦学习)的推理攻击,并列出保护隐私的人工智能系统的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is AI Taking Over the World? No, but It's Making it Less Private
This talk highlights challenges and opportunities for trustworthy AI with a focus on privacy attacks and countermeasures. AI and machine learning have no future if their privacy and security concerns are not addressed. Machine learning models could hide malicious code or back doors, and leak private information about users. We will explore inference attacks against machine learning models and frameworks (e.g., federated learning), and set out the requirements for privacy-preserving AI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信