外科远程智能机器人系统的网络安全

Alexandra Bernadotte
{"title":"外科远程智能机器人系统的网络安全","authors":"Alexandra Bernadotte","doi":"10.1109/ICARA56516.2023.10126050","DOIUrl":null,"url":null,"abstract":"This paper highlights the progress toward securing teleoperating devices over the past ten years of active technology development. The relevance of this issue lies in the widespread development of teleoperating systems with a small number of systems allowed for operations. Anomalous behavior of the operating device, caused by a disruption in the normal functioning of the system modules, can be associated with remote attacks and exploitation of vulnerabilities, which can lead to fatal consequences. There are regulations and mandates from licensing agencies such as the US Food and Drug Administration (FDA) that place restrictions on the architecture and components of teleoperating systems. These requirements are also evolving to meet new cybersecurity threats. In particular, consumers and safety regulatory agencies are attracted by the threat of compromising hardware modules along with software insecurity. Recently, detailed security frameworks and protocols for teleoperating devices have appeared. However, a matter of intelligent autonomous controllers for analyzing anomalous and suspicious actions in the system remain unattended, as well as emergency protocols from the point of cybersecurity view. This work provides a new approach for the intraoperative cybersecurity of intelligent teleoperative surgical systems, taking into account modern requirements for implementing into the Surgical Remote Intelligent Robotic System LevshAI. The proposed principal security model allows a surgeon or autonomous agent to manage the operation process during various attacks.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cyber Security for Surgical Remote Intelligent Robotic Systems\",\"authors\":\"Alexandra Bernadotte\",\"doi\":\"10.1109/ICARA56516.2023.10126050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper highlights the progress toward securing teleoperating devices over the past ten years of active technology development. The relevance of this issue lies in the widespread development of teleoperating systems with a small number of systems allowed for operations. Anomalous behavior of the operating device, caused by a disruption in the normal functioning of the system modules, can be associated with remote attacks and exploitation of vulnerabilities, which can lead to fatal consequences. There are regulations and mandates from licensing agencies such as the US Food and Drug Administration (FDA) that place restrictions on the architecture and components of teleoperating systems. These requirements are also evolving to meet new cybersecurity threats. In particular, consumers and safety regulatory agencies are attracted by the threat of compromising hardware modules along with software insecurity. Recently, detailed security frameworks and protocols for teleoperating devices have appeared. However, a matter of intelligent autonomous controllers for analyzing anomalous and suspicious actions in the system remain unattended, as well as emergency protocols from the point of cybersecurity view. This work provides a new approach for the intraoperative cybersecurity of intelligent teleoperative surgical systems, taking into account modern requirements for implementing into the Surgical Remote Intelligent Robotic System LevshAI. The proposed principal security model allows a surgeon or autonomous agent to manage the operation process during various attacks.\",\"PeriodicalId\":443572,\"journal\":{\"name\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA56516.2023.10126050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10126050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文重点介绍了近十年来远程操作设备安全技术发展的进展。这个问题的相关性在于远程操作系统的广泛发展,允许少量系统进行操作。由系统模块正常功能中断引起的操作设备的异常行为可能与远程攻击和漏洞利用有关,这可能导致致命的后果。许可机构(如美国食品和药物管理局(FDA))对远程操作系统的体系结构和组件进行了限制。这些要求也在不断发展,以应对新的网络安全威胁。特别是,消费者和安全监管机构被硬件模块和软件不安全的威胁所吸引。最近出现了详细的远程操作设备安全框架和协议。然而,从网络安全的角度来看,用于分析系统中异常和可疑行为的智能自主控制器以及应急协议仍然无人值守。这项工作为智能远程手术系统的术中网络安全提供了一种新的方法,考虑到实现手术远程智能机器人系统LevshAI的现代要求。提出的主体安全模型允许外科医生或自主代理在各种攻击期间管理手术过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyber Security for Surgical Remote Intelligent Robotic Systems
This paper highlights the progress toward securing teleoperating devices over the past ten years of active technology development. The relevance of this issue lies in the widespread development of teleoperating systems with a small number of systems allowed for operations. Anomalous behavior of the operating device, caused by a disruption in the normal functioning of the system modules, can be associated with remote attacks and exploitation of vulnerabilities, which can lead to fatal consequences. There are regulations and mandates from licensing agencies such as the US Food and Drug Administration (FDA) that place restrictions on the architecture and components of teleoperating systems. These requirements are also evolving to meet new cybersecurity threats. In particular, consumers and safety regulatory agencies are attracted by the threat of compromising hardware modules along with software insecurity. Recently, detailed security frameworks and protocols for teleoperating devices have appeared. However, a matter of intelligent autonomous controllers for analyzing anomalous and suspicious actions in the system remain unattended, as well as emergency protocols from the point of cybersecurity view. This work provides a new approach for the intraoperative cybersecurity of intelligent teleoperative surgical systems, taking into account modern requirements for implementing into the Surgical Remote Intelligent Robotic System LevshAI. The proposed principal security model allows a surgeon or autonomous agent to manage the operation process during various attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信