{"title":"由单极谐振电容功率传输供电的无线传感器节点","authors":"Jonathan Dean, M. Coultis, C. W. van Neste","doi":"10.1109/WoW51332.2021.9462877","DOIUrl":null,"url":null,"abstract":"Sensors are a major component of any automated system. In particular, wireless monitoring of sensors has become increasingly important to reduce the complexity and electrical points of failure as the number of sensors in a system increase. Wireless communication has provided a more scalable approach as compared to serial communication, eliminating the wires that would be used for data monitoring. Similarly, wireless or quasi-wireless power transfer approaches can help reduce the complexity and points of failure when powering these devices. In this paper, we present wireless and quasi-wireless methods for resonant capacitive power transfer that can be used in a system to power Internet of Things (IoT) and sensor monitoring devices.","PeriodicalId":142939,"journal":{"name":"2021 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Wireless Sensor Node Powered by Unipolar Resonant Capacitive Power Transfer\",\"authors\":\"Jonathan Dean, M. Coultis, C. W. van Neste\",\"doi\":\"10.1109/WoW51332.2021.9462877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensors are a major component of any automated system. In particular, wireless monitoring of sensors has become increasingly important to reduce the complexity and electrical points of failure as the number of sensors in a system increase. Wireless communication has provided a more scalable approach as compared to serial communication, eliminating the wires that would be used for data monitoring. Similarly, wireless or quasi-wireless power transfer approaches can help reduce the complexity and points of failure when powering these devices. In this paper, we present wireless and quasi-wireless methods for resonant capacitive power transfer that can be used in a system to power Internet of Things (IoT) and sensor monitoring devices.\",\"PeriodicalId\":142939,\"journal\":{\"name\":\"2021 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoW51332.2021.9462877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoW51332.2021.9462877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wireless Sensor Node Powered by Unipolar Resonant Capacitive Power Transfer
Sensors are a major component of any automated system. In particular, wireless monitoring of sensors has become increasingly important to reduce the complexity and electrical points of failure as the number of sensors in a system increase. Wireless communication has provided a more scalable approach as compared to serial communication, eliminating the wires that would be used for data monitoring. Similarly, wireless or quasi-wireless power transfer approaches can help reduce the complexity and points of failure when powering these devices. In this paper, we present wireless and quasi-wireless methods for resonant capacitive power transfer that can be used in a system to power Internet of Things (IoT) and sensor monitoring devices.