基于进化算法的DSP地址优化

S. Leventhal, Lin Yuan, N. Bambha, S. Bhattacharyya, G. Qu
{"title":"基于进化算法的DSP地址优化","authors":"S. Leventhal, Lin Yuan, N. Bambha, S. Bhattacharyya, G. Qu","doi":"10.1145/1140389.1140399","DOIUrl":null,"url":null,"abstract":"Offset assignment has been studied as a highly effective approach to code optimization in modern digital signal processors (DSPs). In this paper, we propose two evolutionary algorithms to solve the general offset assignment problem with k address registers and an arbitrary auto-modify range. These algorithms differ from previous algorithms by having the capability of visiting the entire search space. We implement and analyze a variety of existing general offset assignment algorithms and test them on a set of standard benchmarks. The algorithms we propose can achieve a performance improvement of up to 31% over the best existing algorithm. We also achieve an average of 14% improvement over the union of recently proposed algorithms.","PeriodicalId":375451,"journal":{"name":"Software and Compilers for Embedded Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"DSP address optimization using evolutionary algorithms\",\"authors\":\"S. Leventhal, Lin Yuan, N. Bambha, S. Bhattacharyya, G. Qu\",\"doi\":\"10.1145/1140389.1140399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offset assignment has been studied as a highly effective approach to code optimization in modern digital signal processors (DSPs). In this paper, we propose two evolutionary algorithms to solve the general offset assignment problem with k address registers and an arbitrary auto-modify range. These algorithms differ from previous algorithms by having the capability of visiting the entire search space. We implement and analyze a variety of existing general offset assignment algorithms and test them on a set of standard benchmarks. The algorithms we propose can achieve a performance improvement of up to 31% over the best existing algorithm. We also achieve an average of 14% improvement over the union of recently proposed algorithms.\",\"PeriodicalId\":375451,\"journal\":{\"name\":\"Software and Compilers for Embedded Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1140389.1140399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1140389.1140399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在现代数字信号处理器(dsp)中,偏置分配作为一种高效的编码优化方法得到了研究。在本文中,我们提出了两种进化算法来解决具有k个地址寄存器和任意自修改范围的一般偏移分配问题。这些算法与以前的算法不同,它们具有访问整个搜索空间的能力。我们实现和分析了各种现有的通用偏移分配算法,并在一组标准基准上对它们进行了测试。我们提出的算法可以比现有的最佳算法实现高达31%的性能改进。与最近提出的算法的并集相比,我们也实现了平均14%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSP address optimization using evolutionary algorithms
Offset assignment has been studied as a highly effective approach to code optimization in modern digital signal processors (DSPs). In this paper, we propose two evolutionary algorithms to solve the general offset assignment problem with k address registers and an arbitrary auto-modify range. These algorithms differ from previous algorithms by having the capability of visiting the entire search space. We implement and analyze a variety of existing general offset assignment algorithms and test them on a set of standard benchmarks. The algorithms we propose can achieve a performance improvement of up to 31% over the best existing algorithm. We also achieve an average of 14% improvement over the union of recently proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信