基于最小分类误差的特征转换与模型设计

M. Ratnagiri, L. Rabiner, B. Juang
{"title":"基于最小分类误差的特征转换与模型设计","authors":"M. Ratnagiri, L. Rabiner, B. Juang","doi":"10.1109/ICMLA.2010.122","DOIUrl":null,"url":null,"abstract":"A Minimum Classification Error (MCE) based recognition system that also estimates a global feature transformation matrix has been implemented. Unlike earlier studies, we make the explicit assumption that the covariance matrix of the Gaussian mixtures is diagonal when estimating the transformation matrix. This is necessary for mathematical consistency between the model and the transformation matrix estimates. Experimental results show a reduction of up to 50% in the word error rate as compared to Maximum Likelihood estimation.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature Transformation and Model Design Using Minimum Classification Error\",\"authors\":\"M. Ratnagiri, L. Rabiner, B. Juang\",\"doi\":\"10.1109/ICMLA.2010.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Minimum Classification Error (MCE) based recognition system that also estimates a global feature transformation matrix has been implemented. Unlike earlier studies, we make the explicit assumption that the covariance matrix of the Gaussian mixtures is diagonal when estimating the transformation matrix. This is necessary for mathematical consistency between the model and the transformation matrix estimates. Experimental results show a reduction of up to 50% in the word error rate as compared to Maximum Likelihood estimation.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实现了一种基于最小分类误差(MCE)的识别系统,该系统同时估计了全局特征变换矩阵。与以往的研究不同,我们在估计变换矩阵时明确假设高斯混合物的协方差矩阵是对角的。这对于模型和变换矩阵估计之间的数学一致性是必要的。实验结果表明,与最大似然估计相比,该方法的错误率降低了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Transformation and Model Design Using Minimum Classification Error
A Minimum Classification Error (MCE) based recognition system that also estimates a global feature transformation matrix has been implemented. Unlike earlier studies, we make the explicit assumption that the covariance matrix of the Gaussian mixtures is diagonal when estimating the transformation matrix. This is necessary for mathematical consistency between the model and the transformation matrix estimates. Experimental results show a reduction of up to 50% in the word error rate as compared to Maximum Likelihood estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信