{"title":"一类洛伦兹拟sasakian流形","authors":"C. Murathan, A. Yildiz, K. Arslan","doi":"10.3176/phys.math.2006.4.02","DOIUrl":null,"url":null,"abstract":"We classify Lorentzian para-Sasakian manifolds which satisfy P ¢ C = 0, Z ¢ C = LCQ(g;C); P ¢ Z i Z ¢ P = 0, and P ¢ Z + Z ¢ P = 0; where P is the viWeyl projective tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor.","PeriodicalId":308961,"journal":{"name":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On a class of Lorentzian para-Sasakian manifold\",\"authors\":\"C. Murathan, A. Yildiz, K. Arslan\",\"doi\":\"10.3176/phys.math.2006.4.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify Lorentzian para-Sasakian manifolds which satisfy P ¢ C = 0, Z ¢ C = LCQ(g;C); P ¢ Z i Z ¢ P = 0, and P ¢ Z + Z ¢ P = 0; where P is the viWeyl projective tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor.\",\"PeriodicalId\":308961,\"journal\":{\"name\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3176/phys.math.2006.4.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3176/phys.math.2006.4.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We classify Lorentzian para-Sasakian manifolds which satisfy P ¢ C = 0, Z ¢ C = LCQ(g;C); P ¢ Z i Z ¢ P = 0, and P ¢ Z + Z ¢ P = 0; where P is the viWeyl projective tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor.