一类洛伦兹拟sasakian流形

C. Murathan, A. Yildiz, K. Arslan
{"title":"一类洛伦兹拟sasakian流形","authors":"C. Murathan, A. Yildiz, K. Arslan","doi":"10.3176/phys.math.2006.4.02","DOIUrl":null,"url":null,"abstract":"We classify Lorentzian para-Sasakian manifolds which satisfy P ¢ C = 0, Z ¢ C = LCQ(g;C); P ¢ Z i Z ¢ P = 0, and P ¢ Z + Z ¢ P = 0; where P is the viWeyl projective tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor.","PeriodicalId":308961,"journal":{"name":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On a class of Lorentzian para-Sasakian manifold\",\"authors\":\"C. Murathan, A. Yildiz, K. Arslan\",\"doi\":\"10.3176/phys.math.2006.4.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify Lorentzian para-Sasakian manifolds which satisfy P ¢ C = 0, Z ¢ C = LCQ(g;C); P ¢ Z i Z ¢ P = 0, and P ¢ Z + Z ¢ P = 0; where P is the viWeyl projective tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor.\",\"PeriodicalId\":308961,\"journal\":{\"name\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3176/phys.math.2006.4.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3176/phys.math.2006.4.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们对满足PⅳC = 0, ZⅳC = LCQ(g;C)的Lorentzian para- sasaki流形进行了分类;P¢Z i Z¢P = 0, P¢Z + Z¢P = 0;其中P是viWeyl射影张量,Z是共圆张量,C是Weyl共形曲率张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of Lorentzian para-Sasakian manifold
We classify Lorentzian para-Sasakian manifolds which satisfy P ¢ C = 0, Z ¢ C = LCQ(g;C); P ¢ Z i Z ¢ P = 0, and P ¢ Z + Z ¢ P = 0; where P is the viWeyl projective tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信