发展了超分散复合粉末材料连续压制产品的理论

Ding Kai Jian
{"title":"发展了超分散复合粉末材料连续压制产品的理论","authors":"Ding Kai Jian","doi":"10.21661/r-559449","DOIUrl":null,"url":null,"abstract":"In article there are discussed the basic results of theoretical investigating continuous ultra-dispersed powder materials pressing process for obtaining lengthy products with nano-crystal structure. Within the framework of the hypothesis about similarity under stress conditions in compressible and incompressible materials in the pressing channel, the pressure distribution along the pressing channel is established. Using G.M. Zhdanovich equation with new material density distribution boundary conditions along the length of the pressing channel is found.","PeriodicalId":438446,"journal":{"name":"Interactive science","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing the theory of continuous pressing products made of ultra - dispersed composite powder materials\",\"authors\":\"Ding Kai Jian\",\"doi\":\"10.21661/r-559449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In article there are discussed the basic results of theoretical investigating continuous ultra-dispersed powder materials pressing process for obtaining lengthy products with nano-crystal structure. Within the framework of the hypothesis about similarity under stress conditions in compressible and incompressible materials in the pressing channel, the pressure distribution along the pressing channel is established. Using G.M. Zhdanovich equation with new material density distribution boundary conditions along the length of the pressing channel is found.\",\"PeriodicalId\":438446,\"journal\":{\"name\":\"Interactive science\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interactive science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21661/r-559449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interactive science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21661/r-559449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了超分散粉体材料连续压制工艺理论研究的基本结果,以获得具有纳米晶体结构的长条形产品。在可压缩材料和不可压缩材料在压力条件下相似假设的框架下,建立了沿挤压通道的压力分布。利用日达诺维奇方程,提出了新的材料密度沿压道长度分布的边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing the theory of continuous pressing products made of ultra - dispersed composite powder materials
In article there are discussed the basic results of theoretical investigating continuous ultra-dispersed powder materials pressing process for obtaining lengthy products with nano-crystal structure. Within the framework of the hypothesis about similarity under stress conditions in compressible and incompressible materials in the pressing channel, the pressure distribution along the pressing channel is established. Using G.M. Zhdanovich equation with new material density distribution boundary conditions along the length of the pressing channel is found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信