Chongjun Ouyang, Haoman Xu, Xujie Zang, Hongwen Yang
{"title":"利用上行毫米波MU-MIMO网络中的透镜天线阵列:联合波束形成优化","authors":"Chongjun Ouyang, Haoman Xu, Xujie Zang, Hongwen Yang","doi":"10.1109/ISWCS56560.2022.9940256","DOIUrl":null,"url":null,"abstract":"This paper considers a lens antenna array-assisted millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) system. The base station's beam selection matrix and user terminals' phase-only beamformers are jointly designed with the aim of maximizing the uplink sum rate. In order to deal with the formulated mixed-integer optimization problem, a penalty dual decomposition (PDD)-based iterative algorithm is developed via capitalizing on the weighted minimum mean square error (WMMSE), block coordinate descent (BCD), and minorization-maximization (MM) techniques. Moreover, a low-complexity sequential optimization (SO)-based algorithm is proposed at the cost of a slight sum rate performance loss. Numerical results demonstrate that the proposed methods can achieve higher sum rates than state-of-the-art methods.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Lens Antenna Arrays in Uplink mmWave MU-MIMO Networks: Joint Beamforming Optimization\",\"authors\":\"Chongjun Ouyang, Haoman Xu, Xujie Zang, Hongwen Yang\",\"doi\":\"10.1109/ISWCS56560.2022.9940256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a lens antenna array-assisted millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) system. The base station's beam selection matrix and user terminals' phase-only beamformers are jointly designed with the aim of maximizing the uplink sum rate. In order to deal with the formulated mixed-integer optimization problem, a penalty dual decomposition (PDD)-based iterative algorithm is developed via capitalizing on the weighted minimum mean square error (WMMSE), block coordinate descent (BCD), and minorization-maximization (MM) techniques. Moreover, a low-complexity sequential optimization (SO)-based algorithm is proposed at the cost of a slight sum rate performance loss. Numerical results demonstrate that the proposed methods can achieve higher sum rates than state-of-the-art methods.\",\"PeriodicalId\":141258,\"journal\":{\"name\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS56560.2022.9940256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper considers a lens antenna array-assisted millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) system. The base station's beam selection matrix and user terminals' phase-only beamformers are jointly designed with the aim of maximizing the uplink sum rate. In order to deal with the formulated mixed-integer optimization problem, a penalty dual decomposition (PDD)-based iterative algorithm is developed via capitalizing on the weighted minimum mean square error (WMMSE), block coordinate descent (BCD), and minorization-maximization (MM) techniques. Moreover, a low-complexity sequential optimization (SO)-based algorithm is proposed at the cost of a slight sum rate performance loss. Numerical results demonstrate that the proposed methods can achieve higher sum rates than state-of-the-art methods.