分层地形因子分析

Jeremy R. Manning, R. Ranganath, Waitsang Keung, N. Turk-Browne, J. Cohen, K. Norman, D. Blei
{"title":"分层地形因子分析","authors":"Jeremy R. Manning, R. Ranganath, Waitsang Keung, N. Turk-Browne, J. Cohen, K. Norman, D. Blei","doi":"10.1109/PRNI.2014.6858530","DOIUrl":null,"url":null,"abstract":"Recent work has revealed that cognitive processes are often reflected in patterns of functional connectivity throughout the brain (for review see [16]). However, examining functional connectivity patterns using traditional methods carries a substantial computational burden (of computing time and memory). Here we present a technique, termed Hierarchical topographic factor analysis, for efficiently discovering brain networks in large multi-subject neuroimaging datasets.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Hierarchical topographic factor analysis\",\"authors\":\"Jeremy R. Manning, R. Ranganath, Waitsang Keung, N. Turk-Browne, J. Cohen, K. Norman, D. Blei\",\"doi\":\"10.1109/PRNI.2014.6858530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work has revealed that cognitive processes are often reflected in patterns of functional connectivity throughout the brain (for review see [16]). However, examining functional connectivity patterns using traditional methods carries a substantial computational burden (of computing time and memory). Here we present a technique, termed Hierarchical topographic factor analysis, for efficiently discovering brain networks in large multi-subject neuroimaging datasets.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

最近的研究表明,认知过程通常反映在整个大脑的功能连接模式中(详见[16])。然而,使用传统方法检查功能连接模式会带来大量的计算负担(计算时间和内存)。在这里,我们提出了一种称为分层地形因子分析的技术,用于有效地发现大型多学科神经成像数据集中的大脑网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical topographic factor analysis
Recent work has revealed that cognitive processes are often reflected in patterns of functional connectivity throughout the brain (for review see [16]). However, examining functional connectivity patterns using traditional methods carries a substantial computational burden (of computing time and memory). Here we present a technique, termed Hierarchical topographic factor analysis, for efficiently discovering brain networks in large multi-subject neuroimaging datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信