多语音位识别与语音信息识别

Liang Wang, E. Ambikairajah, E. Choi
{"title":"多语音位识别与语音信息识别","authors":"Liang Wang, E. Ambikairajah, E. Choi","doi":"10.1109/ICPR.2006.823","DOIUrl":null,"url":null,"abstract":"Previous research indicates that automatic language identification systems based on phonotactic information produce the best results compared with other systems based on acoustic or prosodic information. This paper investigates two different approaches that use phonotactic information: parallel phoneme recognition followed by language modeling (PPRLM) and multi-lingual PRLM. In the PPRLM approach, we have modified the system by using four different language models with different discounting methods, including the linear, absolute, good-turning and Witten-Bell. Our results show that the modified PPRLM system with the Witten-Bell discounting outperforms other systems and achieves 75.5% language identification accuracy for the OGI-TS speech corpus","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multi-lingual Phoneme Recognition and Language Identification Using Phonotactic Information\",\"authors\":\"Liang Wang, E. Ambikairajah, E. Choi\",\"doi\":\"10.1109/ICPR.2006.823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous research indicates that automatic language identification systems based on phonotactic information produce the best results compared with other systems based on acoustic or prosodic information. This paper investigates two different approaches that use phonotactic information: parallel phoneme recognition followed by language modeling (PPRLM) and multi-lingual PRLM. In the PPRLM approach, we have modified the system by using four different language models with different discounting methods, including the linear, absolute, good-turning and Witten-Bell. Our results show that the modified PPRLM system with the Witten-Bell discounting outperforms other systems and achieves 75.5% language identification accuracy for the OGI-TS speech corpus\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

以往的研究表明,与基于声学或韵律信息的自动语言识别系统相比,基于语音信息的自动语言识别系统产生了最好的结果。本文研究了两种不同的使用语音定向信息的方法:平行音素识别和语言建模(PPRLM)和多语言PRLM。在PPRLM方法中,我们使用了线性、绝对、good-turning和Witten-Bell四种不同的语言模型和不同的折现方法对系统进行了修改。结果表明,基于Witten-Bell折现的改进PPRLM系统对OGI-TS语音语料库的语言识别准确率达到75.5%,优于其他系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-lingual Phoneme Recognition and Language Identification Using Phonotactic Information
Previous research indicates that automatic language identification systems based on phonotactic information produce the best results compared with other systems based on acoustic or prosodic information. This paper investigates two different approaches that use phonotactic information: parallel phoneme recognition followed by language modeling (PPRLM) and multi-lingual PRLM. In the PPRLM approach, we have modified the system by using four different language models with different discounting methods, including the linear, absolute, good-turning and Witten-Bell. Our results show that the modified PPRLM system with the Witten-Bell discounting outperforms other systems and achieves 75.5% language identification accuracy for the OGI-TS speech corpus
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信