肺间质性疾病分类的统计与图表相结合

Álvaro Albuquerque, Yana Mendes, E. Almeida, Raquel Cabral, Fabiane Queiroz
{"title":"肺间质性疾病分类的统计与图表相结合","authors":"Álvaro Albuquerque, Yana Mendes, E. Almeida, Raquel Cabral, Fabiane Queiroz","doi":"10.5753/sibgrapi.est.2022.23274","DOIUrl":null,"url":null,"abstract":"Problems of texture classification are consistently challenging once the patterns of different instances can be very similar. In the context of medical imaging, this group of methods can aid in diagnosing patients as part of the concept of Computer-Aided Diagnosis (CAD). In this paper, we propose a method for texture classification in the context of classifying Interstitial Pulmonary Diseases (IPDs) on high-resolution Computed Tomographies (CTs) using concepts of complex networks and statistical metrics. Our approach is based on mapping the input image into multiscale graphs and extracting the closeness centrality metric. We combine the feature vector resulting from the closeness analysis with Haralick and Local Binary Pattern descriptors. We analyze the proposed approach’s performance by comparing it with other methods and discussing its metrics for each class (IPD pattern) of the dataset. Based on the results, we can highlight our technique as an aid on the problem of diagnosing patients with COVID-19.","PeriodicalId":182158,"journal":{"name":"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Statistical and Graph-Based Approaches to Classification of Interstitial Pulmonary Diseases\",\"authors\":\"Álvaro Albuquerque, Yana Mendes, E. Almeida, Raquel Cabral, Fabiane Queiroz\",\"doi\":\"10.5753/sibgrapi.est.2022.23274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problems of texture classification are consistently challenging once the patterns of different instances can be very similar. In the context of medical imaging, this group of methods can aid in diagnosing patients as part of the concept of Computer-Aided Diagnosis (CAD). In this paper, we propose a method for texture classification in the context of classifying Interstitial Pulmonary Diseases (IPDs) on high-resolution Computed Tomographies (CTs) using concepts of complex networks and statistical metrics. Our approach is based on mapping the input image into multiscale graphs and extracting the closeness centrality metric. We combine the feature vector resulting from the closeness analysis with Haralick and Local Binary Pattern descriptors. We analyze the proposed approach’s performance by comparing it with other methods and discussing its metrics for each class (IPD pattern) of the dataset. Based on the results, we can highlight our technique as an aid on the problem of diagnosing patients with COVID-19.\",\"PeriodicalId\":182158,\"journal\":{\"name\":\"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sibgrapi.est.2022.23274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2022.23274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当不同实例的模式非常相似时,纹理分类问题就变得非常具有挑战性。在医学影像的背景下,这组方法可以帮助诊断患者作为计算机辅助诊断(CAD)概念的一部分。在本文中,我们提出了一种基于复杂网络和统计度量的高分辨率计算机断层扫描(ct)间质性肺疾病(IPDs)纹理分类方法。我们的方法是基于将输入图像映射到多尺度图中并提取接近中心性度量。我们将接近度分析的特征向量与Haralick和局部二元模式描述符结合起来。我们通过将该方法与其他方法进行比较并讨论其对数据集的每个类(IPD模式)的度量来分析该方法的性能。基于这些结果,我们可以突出我们的技术在COVID-19患者诊断问题上的辅助作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Statistical and Graph-Based Approaches to Classification of Interstitial Pulmonary Diseases
Problems of texture classification are consistently challenging once the patterns of different instances can be very similar. In the context of medical imaging, this group of methods can aid in diagnosing patients as part of the concept of Computer-Aided Diagnosis (CAD). In this paper, we propose a method for texture classification in the context of classifying Interstitial Pulmonary Diseases (IPDs) on high-resolution Computed Tomographies (CTs) using concepts of complex networks and statistical metrics. Our approach is based on mapping the input image into multiscale graphs and extracting the closeness centrality metric. We combine the feature vector resulting from the closeness analysis with Haralick and Local Binary Pattern descriptors. We analyze the proposed approach’s performance by comparing it with other methods and discussing its metrics for each class (IPD pattern) of the dataset. Based on the results, we can highlight our technique as an aid on the problem of diagnosing patients with COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信