有界有理锥的代换

J. Beauquier, M. Latteux
{"title":"有界有理锥的代换","authors":"J. Beauquier, M. Latteux","doi":"10.1109/SFCS.1982.90","DOIUrl":null,"url":null,"abstract":"We study the family S of rational cones obtained by iterated substitutions from rational cones L1, .., Ln. This family is a semi-group and to every non empty word u defined on the alphabet {L1, ..., Ln}, corresponds a rational cone U of S. We give sufficient conditions for S to be free (U = U′ implies u = u′) and to verify the subpattern property (U ⊂ U′ implies u is a subpattern of u′). We study, more particularly, the case where L1, ..., Ln are bounded rational cones.","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substitution of bounded rational cone\",\"authors\":\"J. Beauquier, M. Latteux\",\"doi\":\"10.1109/SFCS.1982.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the family S of rational cones obtained by iterated substitutions from rational cones L1, .., Ln. This family is a semi-group and to every non empty word u defined on the alphabet {L1, ..., Ln}, corresponds a rational cone U of S. We give sufficient conditions for S to be free (U = U′ implies u = u′) and to verify the subpattern property (U ⊂ U′ implies u is a subpattern of u′). We study, more particularly, the case where L1, ..., Ln are bounded rational cones.\",\"PeriodicalId\":127919,\"journal\":{\"name\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1982.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1982.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由有理锥L1,…通过迭代替换得到的有理锥族S。Ln。这个族是一个半群,对于字母{L1,…, Ln},对应于S的有理锥U,我们给出S是自由的充分条件(U = U '暗示U = U '),并验证子模式的性质(U≠U '暗示U是U '的子模式)。更具体地说,我们研究L1,…, Ln是有界有理锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Substitution of bounded rational cone
We study the family S of rational cones obtained by iterated substitutions from rational cones L1, .., Ln. This family is a semi-group and to every non empty word u defined on the alphabet {L1, ..., Ln}, corresponds a rational cone U of S. We give sufficient conditions for S to be free (U = U′ implies u = u′) and to verify the subpattern property (U ⊂ U′ implies u is a subpattern of u′). We study, more particularly, the case where L1, ..., Ln are bounded rational cones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信