利用Naïve贝叶斯模型分析泰国假新闻

Peemapat Podsoonthorn, Thapana Boonchoo, Wanida Putthividhya
{"title":"利用Naïve贝叶斯模型分析泰国假新闻","authors":"Peemapat Podsoonthorn, Thapana Boonchoo, Wanida Putthividhya","doi":"10.1109/ICSEC56337.2022.10049359","DOIUrl":null,"url":null,"abstract":"Detecting fake news in an early stage, even though it is challenging, is thus adventurous to protect harms to people. In this paper, we present a framework for revealing the evidences of fake news in Thai news titles using the Naïve Bayes model. The framework enables us to discover footprints for fact news and fake news through the four back-to-back steps: data acquisition, data pre-processing, data exploration, and data modeling. We also intensely examine the Naïve Bayes model discrimination of fact and fake news when employing different text normalization methods. The experiments show that the Naïve Bayes model can achieve the accuracy performance up to 89%. Moreover, we provide the extensive discussions about our data exploration. We also discuss our application of posterior probabilities to reveal evidences of fake news.","PeriodicalId":430850,"journal":{"name":"2022 26th International Computer Science and Engineering Conference (ICSEC)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Thai Fake News Using Naïve Bayes Models\",\"authors\":\"Peemapat Podsoonthorn, Thapana Boonchoo, Wanida Putthividhya\",\"doi\":\"10.1109/ICSEC56337.2022.10049359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting fake news in an early stage, even though it is challenging, is thus adventurous to protect harms to people. In this paper, we present a framework for revealing the evidences of fake news in Thai news titles using the Naïve Bayes model. The framework enables us to discover footprints for fact news and fake news through the four back-to-back steps: data acquisition, data pre-processing, data exploration, and data modeling. We also intensely examine the Naïve Bayes model discrimination of fact and fake news when employing different text normalization methods. The experiments show that the Naïve Bayes model can achieve the accuracy performance up to 89%. Moreover, we provide the extensive discussions about our data exploration. We also discuss our application of posterior probabilities to reveal evidences of fake news.\",\"PeriodicalId\":430850,\"journal\":{\"name\":\"2022 26th International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC56337.2022.10049359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC56337.2022.10049359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在早期阶段发现假新闻,即使是具有挑战性的,因此是冒险的,以保护对人们的伤害。在本文中,我们提出了一个使用Naïve贝叶斯模型来揭示泰国新闻标题中假新闻证据的框架。该框架使我们能够通过四个背靠背的步骤发现事实新闻和假新闻的足迹:数据采集,数据预处理,数据探索和数据建模。我们还深入研究了Naïve贝叶斯模型在使用不同文本归一化方法时对事实和假新闻的区分。实验表明,Naïve贝叶斯模型可以达到89%的准确率。此外,我们还提供了关于我们的数据探索的广泛讨论。我们还讨论了后验概率在揭示假新闻证据中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Thai Fake News Using Naïve Bayes Models
Detecting fake news in an early stage, even though it is challenging, is thus adventurous to protect harms to people. In this paper, we present a framework for revealing the evidences of fake news in Thai news titles using the Naïve Bayes model. The framework enables us to discover footprints for fact news and fake news through the four back-to-back steps: data acquisition, data pre-processing, data exploration, and data modeling. We also intensely examine the Naïve Bayes model discrimination of fact and fake news when employing different text normalization methods. The experiments show that the Naïve Bayes model can achieve the accuracy performance up to 89%. Moreover, we provide the extensive discussions about our data exploration. We also discuss our application of posterior probabilities to reveal evidences of fake news.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信